Рутений 106 распадается на родий 106. Радиоактивные изотопы рутения. Оценка текущей ситуации

Что мы должны знать о рутении November 26th, 2017

Уже несколько дней муссируется в СМИ тема про рутений. Не буду ее пересказывать - думаю вы в курсе.

Так что это такое, было ли это и если было, то чем опасно?


Что такое рутений и где его применяют?

Рутений - это платиновый металл. Сейчас известно семь стабильных и 27 радиоактивных изотопов рутения.

Рутений используют в сплавах для увеличения износостойкости - например, в титане доля рутения составляет 0,1%, а при производстве электрических контактов рутений сплавляют с платиной. Сплавы рутения чрезвычайно устойчивы к высокой температуре, поэтому они используются в аэрокосмической технике как конструкционные материалы. Соединения рутения применяются в ювелирном деле, в электронике - в частности, в тонкопленочных резисторах (это составляет 50% всех случаев применения рутения), а также в солнечных батареях. Кроме того, этот металл - важный катализатор для химических реакций: например, с его помощью на орбитальных станциях очищают воду.

Как открыли рутений?

Фактически этот элемент открывали трижды. Но официально открытие принадлежит профессору Казанского университета Карлу Клаусу. В 1844 году ученый исследовал остатки, которые были получены после извлечения платины и платиновых металлов из руды. Эти остатки Клаус сплавил с селитрой. Часть полученного сплава, которая не растворялась в воде, он подверг воздействию царской водки - смеси азотной и соляной кислоты, которая растворяет металлы, а то, что осталось, перегнал досуха. Из полученного вещества химик выделил гидроокись железа в виде осадка и растворил ее в соляной кислоте. Темный пурпурно-красный цвет раствора навел его на мысль о присутствии неизвестного элемента. Клаусу удалось выделить этот элемент - правда, не в чистом виде, а в соединении с серой.

Новый элемент был назван в честь России - рутением (от лат. Ruthenia). Изначально идея названия принадлежала другому ученому, немецкому химику Готфриду Озанну - он дал это имя одному из трех платиновых металлов, полученных им также при анализе уральской платиновой руды в 1928 году. Однако открытие Озанна не подтвердилось в ходе проверки. Тем не менее, Клаус полагал, что Озанн получил именно рутений, и упомянул об этом. Существует также версия, что элемент на три десятилетия раньше открыл польский профессор Анджей Снядецкий - он предлагал назвать металл вестием, в честь астероида Веста, открытого в 1807 году.


А что известно о рутении-106?

Это радиоактивный изотоп с периодом полураспада чуть более года - из всех нестабильных изотопов рутения этот наиболее долгоживущий. В природе он отсутствует: он появляется при делении урана и плутония в ядерных реакторах - по сути, это побочный продукт утилизации отработанного ядерного топлива (ОЯТ).На момент окончания облучения топлива в реакторе активность 106Ru достигает 2,01 Бк на тонну ОЯТ - это довольно большая цифра.

Основная проблема рутения-106 в том, что во время переработки ядерного топлива он вступает в устойчивые соединения, которые мешают производству новой продукции. Химикам приходится очищать компоненты от рутения на каждом этапе технологического процесса, чтобы получить из отработавшего ядерного топлива новое.

Рутений-106 используется в лучевой терапии при злокачественных опухолях глаз. Также его можно использовать в радиоизотопных термоэлектрических генераторах, которые применяются, в частности в электроснабжении удаленных от Солнца космических аппаратов. Однако для этих целей на практике применяют плутоний-238, изотопы рутения же не используются.

Опасен ли рутений-106 для здоровья?

Рутений-106, как и любой другой источник ионизирующего излучения, оказывает воздействие на организм. Он входит в группу Б - вторую по радиотоксичности. В группу А входят особо опасные радионуклиды: полоний-210, радий-226, плутоний-238 и другие альфа-излучатели. От потока альфа-частиц легко защититься листом бумаги, так как у них низкая проникающая способность - но если они все же попадают в организм, они вызывают лучевую болезнь.

Рутений-106 является бета-излучателем - проще говоря, он испускает поток электронов. В ходе бета-распада образуется сначала родий-106, который моментально распадается до стабильного палладия-106. На обеих стадиях испускаются электроны, а также небольшая компонента гамма-излучения. Если бета-частица попадает в организм, вреда от нее в 20 раз меньше, чем от альфа частицы - но ее проникающая способность выше.


А откуда такая шумиха по поводу рутения?

12 октября Росгидромет опубликовал бюллетень о радиационной обстановке в России за сентябрь 2017 года, в котором были указаны случаи повышения бета-активности в воздухе и во время выпадения атмосферных осадков. В частности, говорилось о повышенной активности рутения-106 - например, в микрорайоне Дема в Уфе 26 — 27 сентября прошел «рутениевый дождь». Еще раньше, в сентябре европейские мониторинговые станции зафиксировали превышение содержания рутения-106 в воздухе. Немецкие Федеральное ведомство по защите от радиации и Федеральное министерство по охране окружающей среды, охране природы и безопасности реакторов предположили, что источник рутения находится на Южном Урале.

И что, это действительно опасно?

Не так страшен черт, как его малюют. Активность рутения-106 на несколько порядков ниже предельно допустимой нормы и вреда здоровью не несет - это изначально и подчеркивал Росгидромет в своем заявлении.

«Определить рутений в атмосфере очень сложно, особенно в таких малых концентрациях», - говорит сотрудник кафедры радиохимии СПбГУ.

Например, для Аргаяша в бюллетене указаны данные в 7,72 х 10 -5 Бк/м3 , в то время как допустимое значение активности рутения-106 по современным стандартам составляет 4,4 Бк/м3. Появление же в отчете данных о превышении содержания рутения-106 в пробах относительно предыдущего периода в «сотни» раз в Росгидромете объяснили тем, что в предыдущих пробах этот радионуклид вообще отсутствовал. Как поясняет главный редактор портала «Геоэнергетика.ру» Борис Марцинкевич, то, что станции радиологического контроля смогли зафиксировать столь малые концентрации 106Ru, можно считать «тестированием, которое убедительно доказало, что станции работают на хорошем техническом уровне». Международное агентство по атомной энергии (МАгАтЭ) изучило предоставленные данные и отвергло обвинения в адрес России.

Кроме того, существует множество естественных альфа-, бета- и гамма-излучателей.

«Если выйти на набережную в Санкт-Петербурге, там радиационный фон будет выше, чем у нас в лаборатории», - говорит сотрудник кафедры радиохимии СПбГУ. «Потому что гранит от природы обладает высоким радиационным фоном».

А почему активность рутения-106 внезапно выросла?

Точно неизвестно. Как заявили в Росатоме, крупных выбросов радиоактивных веществ на российских предприятиях не было. Производственное объединение «Маяк», в свою очередь, категорически отрицает причастность к возможному загрязнению атмосферы изотопом рутений-106. Крупное загрязнение атмосферы рутением может происходить при нарушении герметичности оболочки тепловыделяющего элемента в реакторе, а также при разрушении источников ионизирующего излучения на основе изотопа. ПО «Маяк» утверждает, что выделение изотопа из отработанного ядерного топлива, равно как и изготовление из него источников излучения на предприятии не проводятся уже много лет. Более того, при первом варианте обычно происходит выброс других, «осколочных» изотопов, что обязательно сказалось бы на показателях этих элементов.


Говорят, что рутений прилетел из космоса - это правда?

«Интерфакс» опубликовал версию, что выброс рутения-106 мог произойти при разрушении спутника. Однако академик Российской академии космонавтики имени Циолковского Александр Железняков говорит, что рутений-106 не используется в электрогенераторах спутников - и если бы такой аппарат сводили с орбиты, его траекторию бы тщательно отслеживали. Поэтому эта версия на грани фантастики.

Откуда же тогда он мог взяться?

Правдоподобным выглядит предположение заведующего кафедры радиохимии химического факультета МГУ имени Ломоносова, член-корреспондента РАН Степана Калмыкова. Он считает, что высокочистый раствор радионуклида мог попасть в атмосферу из медицинского учреждения или предприятия, где работают или производят радиофармпрепараты. Это могло произойти на стадии технического процесса, где рутений превращается в аэрозоль - благодаря летучести он мог распространиться в атмосфере. Хотя другие эксперты говорят, что на утечку рутения, предназначенного для медицинских целей (его используют в лучевой терапии), не похоже: облако слишком большое. Но авария, связанная с ядерным топливом или с его отходами, практически исключена, говорит эксперт.

А вице-губернатор Челябинской области Олег Климов сообщил, что «25 сентября, еще до сообщений о рутении в Европе, были зафиксированы концентрации рутения на постах контроля на Южном Урале. Их размер в 20 тыс. раз меньше допустимой годовой дозы. Проверка показала, что это чистый рутений, который к нам пришел из другого места, — отметил Олег Климов. — Ситуация искусственно напряжена и не имеет под собой оснований».

Может быть, напуганным европейцам стоит искать источник в другой стране? Но, оказывается, в Старом Свете, предприятия, имеющие мало-мальское отношение к работе с радиоактивными веществами, строго засекречены. У нас же всё известно, и жертвами этой прозрачности стали российские метеорологи, которые заявили, что да, содержание изотопов рутения в двух пунктах сбора превысило фон предыдущего месяца в сотни раз. Когда речь идет о радиоактивных веществах — все это выглядит страшно для дилетантов. А специалист, глядя на цифры понимает, что и в России, и в Европе концентрация рутения-106 была в тысячи раз ниже хоть сколько-нибудь опасного уровня. И чтобы в будущем не пугать людей, решили впредь в отчетные таблицы вносить сравнения с этими самыми предельными концентрациями.

Вряд ли дело бесхозного рутения будет раскрыто. Радиация здесь лишь фон для шумихи. Ведь в феврале над Европой гуляло облако изотопа йода, куда более опасного, чем рутений, но разве кто-нибудь слышали об этом?

источники

Загадочный рутений-106: как радиация из Челябинска дошла до Красноярска

Росгидромет подтвердил превышение рутения-106 в Челябинской области: превышение радиационного фона почти до 1 тыс. раз в некоторых населенных пунктах. Однако произошло это только спустя почти 2 месяца. Раньше всех тревогу подняла Европа. Но до сих пор источник радиации в России не найден.

Позже стало известно, что рутений-106 был зафиксирован и в окрестностях Красноярска . Новости ТВК узнали мнения экологов, ученых и врачей, а также выяснили, как радиационное облако дошло до Сибири.

Что такое рутений-106

Рутений-106 – это радиоактивный изотоп рутения. Его нет в природе, это искусственный элемент, который появляется только от человеческой деятельности.

В частности, вырабатывается в ядерных реакторах после распада урана, используется в медицине при лечении онкологических заболеваний зрения и лучевой терапии, а также применяется в генераторах спутников.

Период полураспада рутения составляет почти год. Но после этого он не становится полностью безопасным. Вещество перестанет представлять угрозу для окружающего мира не менее, чем через 40 лет.

«Как и любой другой радиоактивный изотоп, он опасен. При его накоплении в организме человека страдают нервная, сердечно-сосудистая и пищеварительная системы, возрастает риск опухолевых заболеваний. Последствия проявляются не сразу, а через несколько месяцев.

Интересный факт: рутений был открыт русским химиком, профессором Казанского университета Карлом Клаусом в 1844 г., назвал его ученый в честь России (с латинского рутений означает «Россия»).

Хронология событий

Выброс рутения-106 на территории Челябинской области произошел примерно с 25 сентября по 1 октября .

29 сентября Федеральное ведомство по радиационной защите Германии зафиксировало в европейских странах – Германии, Италии, Австрии, Швейцарии, Франции – радиоактивное облако рутения и указало, что источник находится в России на Южном Урале.

Однако в правительстве России заявили, что «не знают об аварии на их территории». Также об отсутствии утечки на своих предприятиях сообщал «Росатом».

По данным Росгидромета, которые у них были к этому моменту, незначительные превышения радиационного фона были зафиксированы только на территории Санкт-Петербурга.

Главный онколог Челябинской области Андрей Важенин сообщил «Интерфаксу», что областной диспансер не располагает информацией об опасном уровне радиации в регионе и посоветовал тем, кто сильно переживает «смотреть футбол и пить пиво».

Отдельно отметим, что в период с 4 по 7 октября рутений-106 был зафиксирован специалистами ФГБУ «Среднесибирское УГМС» в воздухе над Красноярским краем .

23 ноября Росгидромет опубликовал статью, в которой заявил, что ведомство никогда не скрывало от жителей данные мониторинга радиационной обстановки на территории России.

В частности, в статье указано, что результаты проб воздуха в период с 25 сентября по 6 октября были опубликованы на сайте 13 октября.

В ведомстве пояснили, в отчетах публикуются данные в соотношении с фоновыми значениями (по отношению к предыдущему периоду измерений). После случая с рутением в Росгидромете решили публиковать данные в сравнении с установленными предельно допустимыми концентрациями.

Также в документе указано , что полученные с 25 сентября по 6 октября замеры радиационного фона «в сотни-тысячи раз ниже допустимой среднегодовой объемной активности и не представляют опасности для населения». Об этом же сообщили в МАГАТЭ.

В итоге Росгидромет сообщил, что не будет проводить проверку и искать источник радиации, так как угрозы для здоровья жителей нет.

«Поэтому никакой опасности нет, волну мы не гнали. А источник мы не искали, потому что зачем его искать, если опасности нет», – сообщил РБК глава ведомства Максим Яковенко .

Возможные источники радиации

После опубликования отчета Росгидромета Гринпис объявил , что возможным источником выброса рутения-106 может быть предприятие «Маяк», расположенное в закрытом г. Озёрск. Там перерабатывается отработавшее ядерное топливо.

Существует и еще одна версия, откуда бы мог появиться чистый рутений в Челябинской области – повреждение спутника, который в это время пролетал над регионом.

Экологи называют эту версию «самой непротиворечивой».

Также она объясняет, почему скачок уровня радиации был зафиксирован в разных местах, несвязанных друг с другом. Например, в Румынии концентрации превышали российские в 1,5 – 2 раза.

«Мне кажется, наиболее непротиворечивая версия, что это было разрушение некоего военного спутника в верхних слоях атмосферы.

Это объясняет то, что специалисты так и не смогли построить четкий и внятный след рассеивания рутения от некоего эпицентра до окраины, когда концентрация должна падать. Мы видим загрязнения очень пятнистые», – делает вывод эколог Александр Колотов .

Как радиационное облако пришло в Красноярский край

По данным Единой государственной автоматизированной системы мониторинга радиационной обстановки на территории РФ, в Красноярском крае расположено 11 постов наблюдения, которые сосредоточены вокруг столицы региона.

Так, в нашем регионе есть следующие посты: Красноярск, Шумиха-Дивногорск, Кача, Кемчук, Балахта, Шалинское, Уяр, Солянка, Сухобузимское, Большая Мурта и Дзержинское.

Что в итоге

Росгидромет заявил, что не будет проводить расследование, так как концентрации радиоактивного рутения-106 не представляют угрозы для жизни.

Зарубежные СМИ из-за отсутствия внятной информации со стороны России начали усугублять ситуацию.

Появились следующие заголовки: «Была ли в России тайная ядерная катастрофа? Гигантское токсичное облако и уровень радиоактивности в 1000 больше, чем обычно, стали причиной паники», «Причиной необычной активности может быть секретный запуск русской ядерной ракеты или тайный медицинский бизнес, но никто ни в чем не уверен», «Русские все еще молчат о ядерной катастрофе, которая произошла в этом месяце за Уралом».

Некоторые жители нашей страны уверены, что власти намеренно скрывают информацию и не хотят проводить расследования, чтобы не портить репутацию государственной организации «Росатом».

Последние месяцы Европа и Россия взбудоражены сообщениями о надвигающемся радиоактивном облаке рутения-106. Люди задаются вопросом: в чем же дело, что же произошло?

Обычная история. Как случается что-то связанное с радиоактивностью, специалисты, работающие именно в этой области, хранят молчание, а комментируют люди, которые кое-что слышали о радиоактивных изотопах, но на самом деле не разбираются.

Мне пришлось в свое время работать с радиоактивными изотопами рутения, изучать их летучесть. В общем, дело понятное.

1. Как получают рутений-106 ?

Этот радионуклид (период полураспада 374 дня) – продукт деления урана и получается при работе ядерных реакторов. На циклотронах его вовсе не получают, разговоры об этом – глупость.

Выход рутения-106 в продуктах деления – 0,4%, а другого более короткоживущего радиоизотопа рутения – рутения-103 (период полураспада 39 дней) – 3%. Химическое поведение обоих радионуклидов одинаково, и если второго изотопа не видно (как в данном случае), это значит, что рутений-106 выделился из старых продуктов атомного реактора, года полтора или даже через несколько лет после наработки.

2. Как мог получиться выброс чистого рутения-106?

Чистый рутений-106 получают в небольших количествах для изготовления аппликаторов для лечения некоторых глазных заболеваний. Но объяснять появление огромного рутениевого облака какой-то переработкой этих медицинских продуктов нельзя. По оценке , выброс составил 100-300 терабеккерелей. Это огромная активность, никаких аппликаторов не хватит. Да и зачем их перерабатывать?

Еще одна «утка»: рутений появился в результате разрушения спутника. Это опровергается членом Российской академии космонавтики, бывшим советником главы РКК «Энергия» А.Б. Железняковым: на спутниках рутений-106 не используется.

Так в чем же дело? Почему не видно других продуктов расщепления урана?

Дело в том, что рутений обладает достаточно редким для металлов химическим свойством – он образует легколетучее соединение – тетраоксид рутения. Так что при нагревании ядерных отходов на воздухе до определенной температуры полетит только рутений. Есть и другие легколетучие продукты деления урана, например иод-131, но он уже распался (период полураспада 8 дней); другой изотоп иода – иод-129 имеет очень большой период полураспада (16 млн. лет), поэтому его активность крайне мала и на этом фоне не видна.

Таким образом, если выпаривать на воздухе водный раствор старых радиоактивных отходов или нагревать их в печи для остекловывания, то полетит только рутений-106 в виде тетраоксида. Такие долгоживущие радионуклиды, как стронций-90, цезий-137, в данных условиях не летучи и поэтому не выделяются при нагревании. Они появляются в воздухе либо при взрыве и выбросе твердого или жидкого вещества, либо при нагревании до гораздо более высокой температуры – при работе ядерного реактора. Существующие технологии переработки радиоактивных отходов, безусловно, предусматривают улавливание улетевшего рутения специальными фильтрами, но, видимо, в данном случае фильтры не работали.

3. Как распространяется рутений-106 ?

Попав в атмосферу, рутений будет осаждаться на частичках пыли уже в виде малолетучего диоксида. Распространение может быть довольно широким, и облако может распространяться далеко в соответствии с метеоусловиями. Частичное выпадение частиц приводит к повышенной концентрации радиоизотопа на поверхности в отдельных пунктах. Естественно, больше таких пунктов будет поблизости от того места, где произошел выброс, но рутениевые осадки могут случиться и довольно далеко от места аварии. Сам рутений-106 испускает только бета-частицы, но его распространение легко проследить по гамма-активности дочернего короткоживущего продукта распада – родию-106.

Рис 1. Начальное распределение активности рутения-106 согласно расчетам Института ядерной и радиационной безопасности Франции


Рис. 2. Перемещение радиоактивных частиц, предполагаемое на основе опубликованных данных измерений

4. Где бы это могло произойти ?

На опубликованных картах видно (см. рис. 1 и 2), что облако начало свое распространение от Уральского региона. Из крупных ядерных объектов там расположено производственное объединение «Маяк», предприятие госкорпорации Росатом в г. Озерске (Челябинская область). Не так далеко, рядом с Екатеринбургом, действует Белоярская атомная электростанция – также предприятие Росатома. Большинство комментаторов подозревают в инциденте «Маяк», потому что именно там занимаются переработкой ядерных отходов.

Пункты с наибольшим загрязнением рутением-106, согласно опубликованному бюллетеню Федеральной службы по гидрометеорологии и мониторингу окружающей среды России (Росгидромета), – поселки Метлино, Аргаяш, Худайбердинск, Новогорный – находятся как раз в этих местах, в Челябинской области. «Маяк» отрицает причастность к аварии и выбросам. Это предприятие закрытое, несанкционированный доступ на любые его объекты строго запрещен, так что проверить их довольно трудно.

5. Насколько это опасно для населения ?

Власти и специалисты говорят, что обнаруженные концентрации рутения-106 не опасны. Многие люди, памятуя Чернобыльскую историю, им не верят. Давайте разберемся детально.

Журналисты и некоторые экологи любят сравнивать уровень загрязнения с фоновым значением (как они говорят – обычным значением). Это совершенно неправомерно. Если фоновое значение кого-то редкого вещества близко к нулю, то и тысячекратное превышение фона мало что значит.

Дело вовсе не в наличии радиоактивности, а в уровне радиоактивности. Совершенно неправильно думать, что любая радиоактивность вредна. Радиоактивность есть везде и всегда. При малых дозах количество заболеваний вовсе не пропорционально дозе облучения, скорее, наоборот (радиационный гормезис). Человеческому организму необходим такого рода иммунитет, иначе он может погибнуть, например, после вспышек на Солнце.

Существуют нормы [Нормы радиационной безопасности, НРБ-99/2009 и СанПиН 2.6.1.2523-09, Москва, 2009], они довольно жесткие и сделаны с большим запасом. Согласно этим нормам, для профессионалов, работающих с радиоактивностью и под постоянным контролем (лица категории А) норма предельного годового поступления в организм рутения-103 составляет до 1 100 000 беккерелей, на рабочем месте в воздухе его можно иметь не более 440 беккерелей на кубический метр.

Для лиц категории Б – всего населения – нормы более жесткие – не более 36 000 беккерелей внутрь организма и 4,4 беккерелей на кубический метр в среднем за год. Радиотоксичность рутения-106 выше, чем у цезия-137, но ниже, чем у стронция-90.

Ссылаясь на мнение французских физиков-ядерщиков, газета выдвинула версию, что источником выброса было все-таки ПО «Маяк», но произошло это в результате выполнения работ по контракту, связанному с зарубежным научно-исследовательским экспериментом.

Два института получили в 2012 году гранты общим размером 5 млн евро от Европейского совета по исследованиям (European Research Council, ERC) для проведения нового эксперимента с уже существующим высокочувствительным детектором «Борексино» (Borexino), с помощью которого ранее изучались солнечные нейтрино и антинейтрино из земных недр, в подземной лаборатории в горном массиве Гран-Сассо (Италия). Реализация проекта должна была начаться в 2017 году и завершиться через два года; возможно, это открыло бы новую эру в физике элементарных частиц и космологии . В проекте принимали участие российские ученые из ведущих научных центров.

Уже давно ясно, что зарегистрированные выбросы рутения-106 могут быть связаны только с переработкой довольно значительного объема отработавшего ядерного топлива (ОЯТ). Гипотезы о происхождении такого большого количества рутения-106 - разрушение медицинских источников или разрушение спутника - выглядят совершенно нереальными. Как мы писали раньше , «весьма вероятно, что данный выброс рутения-106 произошел от переработки недостаточно выдержанного ОЯТ (1,5–7 лет) или из технологических растворов (рафинатов), образующихся в процессе переработки ОЯТ».

Но в недавнем сообщении международной комиссии [ , ] говорится, что наряду с рутением-106 в выбросах обнаружено некоторое количество также более короткоживущего изотопа рутений-103. По мнению представителей российской стороны, это говорит о том, что выброс не мог произойти в «Маяке», так как выдержка ОЯТ перед переработкой составляет около 6 лет или больше, и рутений-103 за это время полностью бы распался.

Действительно, на ПО «Маяк» регулярно осуществляют переработку хорошо выдержанных ОЯТ в печи остекловывания. В процессе технологии может выделяться чистый рутений-106 в виде легколетучего оксида RuO 4 . С целью предотвращения этого в печь вводят меломассу - вещество, восстанавливающее рутений до более низкого валентного состояния, что подавляет его летучесть.

Кроме того, в технологии переработки предусмотрен специальный модуль для улавливания RuO 4 на сорбенте. Всё, конечно, может случиться, но выглядело бы достаточно странно, если и ОЯТ перед переработкой не были достаточно выдержаны, и восстановитель не ввели, и модуль для поглощения RuO 4 не сработал. Ведь технология считается отработанной: высококвалифицированные специалисты из «Маяка» , Всероссийского НИИ неорганических материалов им. А. А. Бочвара и других институтов много лет трудились над ее отладкой.

Другое дело, когда проводится специальная, нестандартная переработка. Радионуклид церий-144 получали из ОЯТ давно, но в данном случае был нужен новый технологический уровень. Во-первых, требовалось большое количество этого радионуклида, а во-вторых, требовалось получить продукт из относительно свежего ОЯТ. Дело в том, что если брать для переработки старое отработавшее топливо, то в полученном церии-144 будет много стабильных изотопов церий-140, церий-142 и других примесей, и источник не получится компактным. Тогда понятно, почему в данном случае перерабатывалось ОЯТ с меньшей выдержкой.

Химическая технология выделения церия-144 из ОЯТ, в принципе, известна. Как правило, из водных кислотных растворов ОЯТ извлекают церий, переводя его в четырехвалентное состояние Се +4 . Для этого в водный раствор вводят различные окислители. Но тогда одновременно может образовываться RuO 4 , который легколетуч, а восстановитель (как в процессе остекловывания) вводить нельзя - иначе таким путем не удастся извлечь церий. Если при этом водные растворы будут нагреваться, то рутений полетит.

На выходе вентиляции «горячих» камер, где обычно проводят переработку, безусловно, имеются фильтры, но если это всего лишь обычные аэрозольные фильтры, а не специальный сорбент для RuO 4 (как в печи остекловывания), то они не поглотят рутений-106 полностью. В сообщении французских ученых говорится, что для получения искомого количества церия-144 (а это сотни тысяч кюри) требовалось переработать несколько тонн ОЯТ, но всё сделать не удалось. По порядку величины это вполне соответствует оценке количества рутения-106, наблюдавшегося в выбросе, - 100–300 терабеккерелей (3000–8000 кюри) с учетом разницы в выходах, периодах полураспада и того, что не весь рутений, конечно, улетел. Так что всё, в принципе, выглядит реальным.

Вприроде не существуют, нo они образуются в результате деления ядер урана и плутония в реакторах атомных электростанций, подводных лодок, кораблей, при взрывах атомных бомб. Большинство радиоактивных изотопов рутения недолговечны, но два - рутений-103 и рутений-106 - имеют достаточно большие периоды полураспада (39,8 суток и 1,01 года) и накапливаются в реакторах. Знаменательно, что при распаде плутония рутения составляют до 30% общей массы всех осколков деления. С теоретической точки зрения этот факт безусловно интересен. В нем даже есть особая «изюминка»: осуществилась мечта алхимиков-неблагородный металл превратился в благородный. Действительно, в наши дни предприятия по производству плутония выбрасывают десятки килограммов благородного металла рутения. Но практический вред, наносимый этим процессом атомной технике, не окупился бы даже в том случае, если бы удалось применить с пользой весь , полученный в ядерных реакторах.

Чем вреден рутений

Одно из главных достоинств ядерного горючего - его воспроизводимость. Как известно, при «сжигании» урановых блоке» в ядерных реакторах образуется новое ядерное горючее - . Одновременно образуется и «зола» - осколки деления ядер урана, в том числе и рутения. Золу, естественно, приходится удалять. Мало того, что ядра осколочных элементов захватывают нейтроны и обрывают цепную реакцию, они еще создают уровни радиации, значительно превышающие допустимые. Основную массу осколков отделить от урана и плутония относительно легко, что и делается на специальных заводах, а вот радиоактивный доставляет много неприятностей.

Неизрасходованный и осколки разделяют на специальных установках. Первая стадия разделения - растворение урановых блоков в азотной кислоте. Здесь и начинаются неприятности с рутением. При растворении часть его превращается в комплексные нитро-зосоединения, в основе которых трехвалентная группировка (RuNO)3+. Эта группировка образует в азотной кислоте комплексные соединения всевозможного состава. Они взаимодействуют между собой или с другими ионами, находящимися в растворе, гидролизуются или даже объединяются в неорганические полимерные молекулы. Комплексы совершенно разные, но разделить и идентифицировать их очень трудно. Бесконечное разнообразие свойств нитрозосоединений рутения ставит перед химиками и технологами множество сложнейших вопросов.

Существует несколько методов отделения осколков от плутония и урана. Один из них ионообменный. Раствор, содержащий различные ионы, проходит через систему ионообменных аппаратов. Смысл этой операции состоит в том, что и задерживаются ионитами в аппаратах, а прочие элементы свободно проходят через всю систему. Однако уходит лишь частично. Часть его остается на ионообменнике вместе с ураном.

В другом методе - осадительном - переводится в осадок специальными реактивами, а осколки остаются в растворе. Но вместе с ураном в осадок переходит и часть рутения.

При очистке методом экстракции уран извлекается из водного раствора органическими растворителями, например эфирами фосфорорганических кислот. Осколки остаются в водной фазе, но не все - рутений частично переходит в органическую фазу вместе с ураном.

Трудностей очистки ядерного горючего от рутения пытались избежать, применяя сухие методы, исключающие растворение урановых блоков. Вместо азотной кислоты их обрабатывали фтором. Предполагалось, что уран при этом перейдет в летучий гексафторид и отделится от нелетучих фторидов осколочных элементов. Но рутений и тут остался верен себе. Оказалось, он тоже образует летучие фториды.

Трудности с рутением преследуют технологов и на следующих стадиях работы с делящимися материалами. При улавливании осколков из сбросных растворов большую часть посторонних элементов удается перевести в осадок, а рутений опять-таки частично остается в растворе. Не гарантирует его удаление и биологическая очистка, когда сбросные растворы сливают в специальные бессточные водоемы.

Рутений начинает постепенно мигрировать в грунт, создавая опасность радиоактивного загрязнения на больших расстояниях от водоема. же самое происходит при захоронении осколков в шахтах на большой глубине. Радиоактивный рутений, обладающий (в виде растворимых в воде нитрозосоединений) чрезвычайной подвижностью, или, правильнее сказать, миграционной способностью, может уйти с грунтовыми водами очень далеко.

Проблема очистки - дезактивация оборудования, одежды и т. д.- от радиорутения также имеет свою специфику. В зависимости от того, в каком химическом состоянии находился рутений, его либо удается легко отмыть и удалить, либо он дезактивируется с большим трудом.

Борьбе с радиоактивным рутением уделяют много внимания физики, химики, технологи и особенно радиохимики многих стран. На I и II Международных конференциях по мирному использованию атомной энергии в Женеве этой проблеме было посвящено несколько докладов. Однако до сих пор нет оснований считать борьбу с рутением оконченной успешно, и, видимо, химикам придется еще немало поработать для того, чтобы эту проблему можно было перевести в категорию окончательно решенных.