Николай Лобачевский: параллельные прямые все-таки пересекаются! Однажды две параллельные линии влюбились и пересеклись. Вот так и возникла неевклидова геометрия! Пересекающая параллельные

Недавно в посте на околонаучные темы один из комментаторов завел разговор о геометрии Лобачевского (что он ее не понимает) и даже вроде попросил объяснить. Я тогда ограничилась утверждением, что понимаю. Объяснять эту теорию в ограниченных рамках комментария и одним текстом (без рисунков) показалось мне невозможным.

Однако, подумав, я все же решила попробовать дать небольшой популярный экскурс в эту теорию.

Немного предыстории. Геометрия со времен Евклида стала аксиоматической теорией, в которой большинство утверждений доказывалось на основе нескольких постулатов (аксиом). Считалось, что эти аксиомы «очевидны», т.е. отражают свойства реального (физического) пространства.

Одна из этих аксиом вызывала у ученых подозрение: а нельзя ли ее вывести из остальных постулатов? Современная формулировка этой аксиомы такова:

«Через точку, не лежащую на заданной прямой, можно провести не более одной прямой, параллельной ей». То, что одну-то прямую можно провести, является не аксиомой, а теоремой.

При этом «параллельной» называется прямая, не пересекающая данную. Итак, суть аксиомы в том, что такая прямая – одна!

(Распространенное утверждение «Лобачевский доказал, что параллельные прямые могут и пересекаться» - конечно, является вопиюще неправильным! Ведь это бы противоречило их определению!)

Лобачевский, как и многие до него, решил доказать, что это утверждение можно вывести из других аксиом. Для этого он, как это часто делается в математике, выбрал метод «от противного», т.е. предположил, что прямых, не пересекающих данную, больше одной и попытался вывести из этого противоречие с другими фактами. Но чем дальше он развивал теорию, тем больше убеждался, что никакого противоречия не предвидится! Т.е. получалось, что теория с «неправильным» постулатом тоже имеет право на существование!

Конечно, в первое время его выкладки не признавали, смеялись над ним. Именно поэтому великий Гаусс (который пришел к тем же выводам) не рискнул опубликовать свои результаты. Но со временем пришлось признать, что ЧИСТО ЛОГИЧЕСКИ теория Лобачевского ничем не хуже евклидовой.

Один из остроумных способов убедиться в этом – придумать такие «прямые», которые ведут себя как «прямые» Лобачевского. И математики нашли такой пример, и не один.

Пожалуй, самой простой является модель Пуанкаре. Вы можете сами построить ее нехитрыми приборами.

Начертите не листке бумаги прямую. Возьмите циркуль и, ставя его иглу на эту прямую, нарисуйте полуокружности, находящиеся с одной стороны от прямой. Теперь сотрите прямую (и с ней – концевые точки полуокружностей). Так вот, эти полуокружности «без концов» и будут вести себя, как прямые в геометрии Лобачевского!

Действительно, выделим одну полуокружность и точку вне нее. Есть достаточно много полуокружностей, которые не пересекаются с исходной и все проходят через данную точку. Среди них выделяются две: они касаются нашей исходной «прямой» в концевых точках (которые мы, как Вы помните, стерли) Т.е. реального пересечения не происходит. Эти две окружности задают «границы», между которыми находятся все прямые, не пересекающие данную. Их – бесконечное количество.

Можно заметить, что треугольники в этой модели не такие, как на плоскости (евклидовой): сумма их углов меньше 180 градусов! Впрочем, чем меньше треугольник, тем больше сумма его углов. В «малом», на небольших расстояниях, геометрия Лобачевского практически совпадает с геометрией Евклида. Поэтому, вообще говоря, мы не сможем «экспериментально» отличить одну от другой, если окажется, что доступные нам (космические) расстояния– малы для этой цели.

Впрочем, в наше время ни физики, ни, тем более, математики, не пытаются воспринимать геометрию Лобачевского как модель «реального», физического пространства. Математики поняли, что все, что они могут сказать: если верны такие-то аксиомы, то верны и такие-то теоремы. Ну, а что такое «множества», «точки», «прямые», «углы», «расстояния», и т.п. – этого мы не знаем! Прямо как у Станислава Лема: «Сепульки – это объекты для сепулькирования»

«Говорят, Бертран Рассел определил математику как науку, в которой мы никогда не знаем, о чем говорим, и насколько правильно то, что мы говорим. Известно, что математика широко применяется во многих других областях науки. [ …] Таким образом, одна из главных функций математического доказательства – создание надежной основы для проникновения в суть вещей.»

(из книги «Физики шутят»)

Интересные сведения о соотношении математики и эмпирики можно почерпнуть в работе

7 февраля 1832 года Николай Лобачевский представил на суд коллег свой первый труд по неевклидовой геометрии. Этот день стал началом переворота в математике, а работа Лобачевского - первым шагом к теории относительности Эйнштейна. Сегодня "РГ" собрала пятерку самых распространенных заблуждений о теории Лобачевского, бытующих среди далеких от математической науки людей

Миф первый. Геометрия Лобачевского не имеет ничего общего с Евклидовой.

На самом деле геометрия Лобачевского не слишком сильно отличается от привычной нам Евклидовой. Дело в том, что из пяти постулатов Евклида четыре первых Лобачевский оставил без изменения. То есть он согласен с Евклидом в том, что между двумя любыми точками можно провести прямую, что ее всегда можно продолжить до бесконечности, что из любого центра можно провести окружность с любым радиусом, и что все прямые углы равны между собой. Не согласился Лобачевский только с пятым, наиболее сомнительным с его точки зрения постулатом Евклида. Звучит его формулировка чрезвычайно мудрено, но если переводить ее на понятный простому человеку язык, то получается, что, по мнению Евклида, две непараллельные прямые обязательно пересекутся. Лобачевский сумел доказать ложность этого посыла.

Миф второй. В теории Лобачевского параллельные прямые пересекаются

Это не так. На самом деле пятый постулат Лобачевского звучит так: "На плоскости через точку, не лежащую на данной прямой, проходит более чем одна прямая, не пересекающая данную". Иными словами, для одной прямой можно провести как минимум две прямые через одну точку, которые не будут ее пересекать. То есть в этом постулате Лобачевского речи о параллельных прямых вообще не идет! Говорится лишь о существовании нескольких непересекающихся прямых на одной плоскости. Таким образом, предположение о пересечении параллельных прямых родилось из-за банального незнания сути теории великого российского математика.

Миф третий. Геометрия Лобачевского - единственная неевклидова геометрия

Неевклидовы геометрии - это целый пласт теорий в математике, где основой является отличный от Евклидова пятый постулат. Лобачевский, в отличие от Евклида, к примеру, описывает гиперболическое пространство. Существует еще теория, описывающая сферическое пространство - это геометрия Римана. Вот в ней-то как раз параллельные прямые пересекаются. Классический тому пример из школьной программы - меридианы на глобусе. Если посмотреть на лекало глобуса, то окажется, что все меридианы параллельны. Меж тем, стоит нанести лекало на сферу, как мы видим, что все ранее параллельные меридианы сходятся в двух точках - у полюсов. Вместе теории Евклида, Лобачевского и Римана называют "три великих геометрии".

Миф четвертый. Геометрия Лобачевского не применима в реальной жизни

Напротив, современная наука приходит к пониманию, что Евклидова геометрия - лишь частный случай геометрии Лобачевского, и что в реальный мир точнее описывается именно формулами русского ученого. Сильнейшим толчком к дальнейшему развитию геометрии Лобачевского стала теория относительности Альберта Эйнштейна, которая показала, что само пространство нашей Вселенной не является линейным, а представляет собой гиперболическую сферу. Между тем, сам Лобачевский, несмотря на то, что всю жизнь работал над развитием своей теории, называл ее "воображаемой геометрией".

Миф пятый. Лобачевский первым создал неевклидову геометрию

Это не совсем так. Параллельно с ним и независимо от него к подобным выводам пришли венгерский математик Янош Бойяи и знаменитый немецкий ученый Карл Фридрих Гаусс. Однако труды Яноша не были замечены широкой публикой, а Карл Гаусс и вовсе предпочел не издаваться. Поэтому именно наш ученый считается первопроходцем в этой теории. Однако существует несколько парадоксальная точка зрения, что первым неевклидову геометрию придумал сам Евклид. Дело в том, что он самокритично считал свой пятый постулат не очевидным, поэтому большую часть из своих теорем он доказал, не прибегая к нему.

Даже полюса связаны меридианами.
Чего уж говорить о параллелях,
которые нет-нет, да и пересекутся...

Если люди встречаются, идя друг другу на встречу, значит - у них разные дороги...
.Аксиома..
Любимая Женщина - ежедневная теорема любви и единственная аксиома мужского счастья...Женщина уверена, что если мужчина ей нравится, то их параллельные пути обязательно должны пересечься...Никто и спорить не будет...
Математика давно нас научила, что две параллельные прямые никогда не пересекаются. Математике то это совершенно безразлично, а вот люди иногда не правильно истолковывают все законы, в том числе - математические, примеряя их на свою жизнь...
Две судьбы существуют независимо друг от друга. Живя своими радостями и горестями, до того времени, пока не пересекаются. Возможно, они и до этого видели друг друга, знали в лицо, слышали голос.
Возможно, даже жили на одном этаже или в одном городе. Но, не имели значения друг для друга, пока однажды - их прямые не пересеклись. В самом прямом смысле! Они столкнулись у входа, наступили друг другу на ноги, оказались в одной очереди, встретились в гостях...

Как угодно, но появилась точка соприкосновения. Изменились траектории. Они подтолкнули друг друга, на секунду замерли, и… понравились друг другу. Что происходит с прямыми? Движение не может прекратиться, если оно остановится, все закончится. Только теперь они попытаются двигаться вместе, в одном направлении....
Направление! Вот что самое главное! Если одна линия тянулась слева на право, а другая - сверху вниз, то, как они соединятся? Никак. Они какое-то время побудут вместе, в одной точке, и вскоре, каждая из них продолжит движение по своей траектории....Если люди ищут счастье в разных его проявлениях, если Она мечтает стать танцовщицей, а Он - полететь в космос. Если Он занимается финансами, а она - домохозяйка. Если Она ненавидит желтый цвет, а Он - носит только эти оттенки, то это не значит, что у них ничего не получится. Это значит - что они немножко разные. Важно, чтоб Они всегда смотрели в одном направлении. В будущее, или в небо, или на закат....Пусть будет одна цель, а пути ее достижения могут разниться. От этого не поменяется смысл, содержание, а форма - понятие относительное....
А еще… одна линия не должна перекрывать другую. Они могут тянуться параллельно, но близко-близко, касаясь краями. Тянуться так в бесконечность....Да так бывает....Я знаю...Две Параллельные пересекаются в бесконечности - и они сами верят в это.
Главное - встретиться....волею Госпожи Случая... Неважно где и как....
Не проходите мимо....
P.S.ИМХО... но иногда две параллельные пересекаясь- образуют крест... крест ставится на всём...у кого то образуется крест, а кого то точка... и дальше параллельные уже никуда не идут... и так бывает... так бывает чаще всего...у многих...


Ждали.. минуты считали... видно устали... друг от друга вдали... чего то дождались,.. когда не встречались?... параллели все дальше,.. сжалившись-сжались... пересекшись в начале... разошлись-порвались... судьбы странные.. свидания рваные ,.. встречи стеклянные,.. мной изломанные.. сплелись в точку малую... жизнь усталую... сердце молчит, уже не горит... лишь тлеет- не греет... вроде пустяк
но затухший очаг, залит огонь... похорон перезвон- странный мой сон... едва холода.. но уже никогда.. не осветит звезда, этот путь в никуда.. разошлись поезда, забыли удачи, в любви нет сдачи... ведь мы параллели, точку общую имели... но не сберегли.. не вблизи, не вдали.. и снова одиноки,.. разные дороги... забыт твой номер.. хоть и не помер... в глазах печаль........... а жаль..

Параллельному лучистому свечению.. Пара ллельных линий.. так сильна их страсть… И как плод того пересечения... Маленькая точка родилась!.......

Параллельные линии не пересекаются.. Аксиома звучит обреченно.. Никогда.Никогда они...Не повстречаются.. Параллельные обрученные.. Обрученные, нареченные, параллельные.. Уходящие в даль запредельную.. Параллельные линии как правило! Не во времени,и не в этой конечности.. Не сойдутся в весёлой беспечности.. Как бы рядом их жизнь не ставила...И как близко не нарисованы.. Точек нет им пересечения...Спорить с правилами - рискованно.. Вот такое вот утверждение! Кто не понял, тому не и надобно... А кто понял - мой брат в несчастии.. От ушедшей любви нет снадобья- Лучше дружеского участья! Лучше новой любви, негаданной.. Жарких взглядов, объятий ласковых.. Варианты нам свыше заданы.. Не минуешь событий знаковых...Я желаю всем неба синего.. Счастья, радости и везения.. А изломанным жизнью линиям.. Больше точек пересечения! Ну а мы навсегда останемся.. Недоступностью отрешения... В жёлтом пламени свечки плавится.. Лишь наш след от пересечения....

Признаки параллельности двух прямых

Теорема 1. Если при пересечении двух прямых секущей:

    накрест лежащие углы равны, или

    соответственные углы равны, или

    сумма односторонних углов равна 180°, то

прямые параллельны (рис.1).

Доказательство. Ограничимся доказательством случая 1.

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.

Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 - внешний угол треугольника АВМ, а ∠ 6 - внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.

Следствие 1 . Две различные прямые на плоскости, перпендикулярные одной и той же прямой, параллельны (рис.2).

Замечание. Способ, которым мы только что доказали случай 1 теоремы 1, называется методом доказательства от противного или приведением к нелепости. Первое название этот способ получил потому, что в начале рассуждения делается предположение, противное (противоположное) тому, что требуется доказать. Приведением к нелепости он называется вследствие того, что, рассуждая на основании сделанного предположения, мы приходим к нелепому выводу (к абсурду). Получение такого вывода заставляет нас отвергнуть сделанное вначале допущение и принять то, которое требовалось доказать.

Задача 1. Построить прямую, проходящую через данную точку М и параллельную данной прямой а, не проходящей через точку М.

Решение. Проводим через точку М прямую р перпендикулярно прямой а (рис. 3).

Затем проводим через точку М прямую b перпендикулярно прямой р. Прямая b параллельна прямой а согласно следствию из теоремы 1.

Из рассмотренной задачи следует важный вывод:
через точку, не лежащую на данной прямой, всегда можно провести прямую, параллельную данной .

Основное свойство параллельных прямых состоит в следующем.

Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Рассмотрим некоторые свойства параллельных прямых, которые следуют из этой аксиомы.

1) Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую (рис.4).

2) Если две различные прямые параллельны третьей прямой, то они параллельны (рис.5).

Справедлива и следующая теорема.

Теорема 2. Если две параллельные прямые пересечены секущей, то:

    накрест лежащие углы равны;

    соответственные углы равны;

    сумма односторонних углов равна 180°.

Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (см. рис.2).

Замечание. Теорема 2 называется обратной теореме 1. Заключение теоремы 1 является условием теоремы 2. А условие теоремы 1 является заключением теоремы 2. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна.

Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Пример 1. Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.

Решение. Пусть условию отвечает рисунок 6.

Год 1819-й, знаменитый французский математики Лаплас мечтает для контакта с инопланетянами установить посреди Сибири огромную светящуюся фигуру, символизирующую теорему Пифагора, а в Казанский университет прибывает новый попечитель - Михаил Магницкий. Он уличает профессоров и преподавателей в вольнодумстве и безбожии и предлагает Александру I торжественно снести здание, приютившее порок.

Император отказывается, университет перезапускают, и новым ректором становится Григорий Никольский - 35-летний, карьеристкого склада математик, любивший обращаться к студентам словами «государики» и повторявший им, что «гипотенуза в прямоугольном треугольнике есть символ сретения правды и мира, правосудия и любви через ходатая бога и человека…» Примерно тогда же в голове 28-летнего Лобачевского, всю жизнь проработавшего в Казанском университете, крутилась и вращалась одна смутная мысль: с пятым постулатом Евклида что-то не так. Но - все по порядку.

В начале были постулаты

Примерно в двух тысячах лет назад по прямой от Лобачевского жил великий древнегреческий математик Евклид, который собрал все имевшиеся до него знания о геометрии в одну большую книгу - «Начала». Начиналась эта книга с семи определений и пяти постулатов - недоказуемых, интуитивно принимаемых на веру утверждений, на фундаменте которых возводились все дальнейшие рассуждения и теоремы.

Первые четыре постулата были лаконичны и стройны:

  1. От всякой точки до всякой точки можно провести прямую.
  2. Ограниченную прямую можно непрерывно продолжать по прямой.
  3. Из всякого центра всяким радиусом может быть описан круг.
  4. Все прямые углы равны между собой.

В их истинности, наверное, никто не сомневался за всю историю мира, но пятый постулат звучал гораздо более запутанно и мало напоминал неоспоримую истину:

  1. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

Позже это утверждение в разных формулировках (самая распространенная из них гласит, что в плоскости через точку, не лежащую на данной прямой, можно провести одну и только одну прямую, параллельную данной) пытались доказать десятки математиков, но все они втягивались в одну и ту же историю. Их доказательства как будто сами себя кусали за хвост - упирались в утверждения, доказать которые без самого пятого постулата было абсолютно невозможно. Они больше напоминали сюжеты картин Эшера, чем строгие математические построения.

Лобачевского пятый постулат смущал не столько своей неаккуратностью, сколько философской нагрузкой: он поселял материю в какое-то застывшее абсолютное пространство, в систему координат, независимую от самой материи и существующую отныне и вовеки для всей Вселенной. Лобачевскому это не нравилось: он считал, что геометрия и реальность переплетены между собой, и писал в своих дневниках: «В природе мы познаем, собственно, только движение, без которого чувственные впечатления невозможны. Итак, все прочие понятия, например Геометрические, произведены нашим умом искусственно, будучи взяты в свойствах движения; а потому пространство само собой, отдельно, для нас не существует. После чего в нашем уме не может быть никакого противоречия, когда мы допускаем, что некоторые силы в природе следуют одной, другие - своей особой Геометрии».

Твердый материалист, он не мог принимать исключительно на веру, что параллельные прямые не пересекаются где-нибудь в бесконечности космоса. Да, Лобачевский сам не раз проводил геодезические измерения на местности и видел, что сумма углов в треугольнике всегда равняется 180 (а это еще одна эквивалентная формулировка пятого начала Евклида), но не мог обещать, что так будет со всеми треугольниками в нашем бесконечном пространстве.

Работа на пересеченной местности

Часто в математике, да и вообще в науке, бывает очень сложно доказать, что что-нибудь неверно или не работает. Примерно так же было и с пятым постулатом Евклида: у людей не получалось доказать его верность, но опровергнуть его было еще сложнее, особенно учитывая, что вся махина теорем геометрии Евклида была стройна и непротиворечива.

Поэтому Лобачевский в своей битве с пятым постулатом обратился к доказательству от противного. Чтобы посмотреть, что будет после этого со всей системой геометрических теорем, он попробовал заменить пятый постулат на его зеркальное отражение («Через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие ее».). Не появится ли в них внутренних противоречий, косвенно указывающих на то, что изначальная версия пятого постулата - такая неаккуратная и контринтуитивная - была все-таки неизбежно верна в нашем пространстве? Но такого не случилось - противоречий не нашлось.

Поэтому Лобачевский взял первые четыре постулата Евклида, добавил к ним новый пятый и на этом стал строить новую непротиворечивую геометрию, описывающую реальный мир, как он надеялся, точней и глубже, чем геометрия евклидова.

Лобачевский даже хотел проверить свою геометрию в космосе - посчитать сумму углов в треугольнике, составленном из звезд, и посмотреть, будет ли она равняться 180 градусам, но все его эксперименты терпели неуспех. В них вкрадывались неточности и колоссальные ошибки, а самого Лобачевского рвали на части: в родном университете он теперь преподавал не только математику, но еще и физику с астрономией; ректор Никольский, мечтавший охладить его пыл, заставил Лобачевского наводить порядок в университетской библиотеке, а попечитель Магницкий сделал математика членом строительной комиссии при университете (судя по всему, проворовавшийся на строительстве Магницкий надеялся скинуть всю вину на нерадивого, витающего в небесах математика, но этот план не удался).

На чистую науку оставались жалкие крупицы времени, но Лобачевский все углублял свою геометрию - формулировал новые теоремы, строил утверждения и наконец 7 февраля (по старому стилю) 1826 года представил перед ученой комиссией Казанского университета свой труд - «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных».

Геометрия новая - проблемы старые

Задним числом жизнь великих идей кажется проще, чем она была в реальности. Да, вокруг косные люди, да, везде недоверие и нежелание расшатывать лодку, но даже с учетом этих отягчающих поправок траектория великой идеи в худшем случае кажется упругой сжатой спиралью, раскручивающейся через вязкую повседневность к свету истины. В реальности это скорей ломаная кривая блужданий - доклад Лобачевского от 7 февраля провалился.

Мы не знаем, какой формы был стол в помещении, где шел доклад, - прямоугольный, круглый или, может быть, овальный; мы не знаем, какие там были окна, стены, двери, но точно понимаем одно: мысли всех присутствовавших тогда шли совершенно перпендикулярными с неевклидовой геометрией путями. Незадолго до этого новый император Николай I сместил Магницкого с его должности, и все члены комиссии теперь думали, как это резкое движение извне поменяет их жизнь, и почти не обращали внимания на странноватого математика, рассказывавшего на французском о какой-то инопланетной геометрии.

Броуновское движение наночастиц в воде

Дальше рукопись была отдана на рецензию некоторым членам комиссии, но они в суматохе мрачных дней, видимо, просто позабыли о ней, и сам доклад так и не был одобрен к публикации. Тогда вся геометрия Лобачевского могла навсегда остаться внутри его головы, если бы не одна неожиданность: новым ректором университета вскоре был избран именно он.

Вряд ли у Лобачевского стало после этого меньше работы и больше сил, но постепенно он оформил свои идеи в законченный труд «О началах геометрии», который сначала напечатали в журнале «Казанский вестник», а потом представили на отзыв в Академию наук, где рецензия досталась одному из самых сильных русских математиков того времени - Михаилу Остроградскому.

«Автор, по-видимому, задался целью написать таким образом, чтобы его нельзя было понять. Он достиг этой цели; большая часть книги осталась столь же неизвестной для меня, как если бы я никогда не видел ее…» - вот его ответ. Новая геометрия остается непонятной. Блуждание продолжается.

Круги по воде

Понимание Лобачевский находит несколькими годами позже. Он публикует свои труды в европейских журналах, где их замечает великий немец Гаусс, который сам не один год втайне ото всех занимался неевклидовой геометрией. Чтобы лучше понять казанского ученого, он оперативно учит русский и потом, впечатленный смелостью и ясностью мыслей Лобачевского, выдвигает того в члены-корреспонденты Геттингенского королевского научного общества.

Признание встречает своего гения, хотя на родине Остроградский и люди его окружения раз за разом отклоняют все работы по неевклидой геометрии вплоть до самой смерти Лобачевского в 1856 году.

Проходит 12-15 лет, и математики находят сразу несколько реальных моделей, в которых работает именно геометрия Лобачевского. В самой простой из них, проективной, за плоскость принимают внутренность круга, а за прямую - его хорду. В результате тот очевидный факт, что через одну точку P , лежащую внутри круга, можно провести сколько угодно хорд, не пересекающихся с одной фиксированной хордой а , автоматически становится в таких правилах игры иллюстрацией пятого начала геометрии Лобачевского.

В 1868 году выходит доклад Римана - другого первопроходца с другой неевклидовой геометрией, в которой через каждую точку в пространстве уже невозможно провести ни одной параллельной прямой, и математикам постепенно становится понятно, что геометрии Римана и Лобачевского - невероятно похожие шаги влево и вправо от привычной евклидовой геометрии. Первая работает на поверхностях с положительной кривизной - вроде шаров или геоидов (параллельные у экватора меридианы встречаются на полюсах), а вторая - на поверхностях с отрицательной кривизной - вроде гиперболоидов или седел.

И еще чуть позже, в начале XX века, новая геометрия наконец встретится с физикой. Эйнштейн сформулирует свою общую теорию относительности в терминах геометрии Римана, и мысли людей, привыкшие ходить по одним и тем же параллельным рельсам, откроют новые маршруты: пространство и время не абсолютны. Движение меняет геометрию. А тысячелетние аксиомы не всегда верны.