Диеновые углеводороды: строение, изомерия и номенклатура. Ациклические непредельные углеводороды диены Физические свойства диенов

Строение алкадиенов

Диеновые углеводороды или алкадиены – это непредельные углеводороды, содержащие две двойные углерод — углеродные связи. Общая формула алкадиенов C n H 2n-2 .

В зависимости от взаимного расположения двойных связей диены подразделяются на три типа:

1) углеводороды с кумулированными двойными связями, т.е. примыкающими к одному атому углерода. Например, пропадиен или аллен (CH 2 =C=CH 2);

2) углеводороды с изолированными двойными связями, т.е разделенными двумя и более простыми связями. Например, пентадиен -1,4 (CH 2 =CH–CH 2 –CH=CH 2);

3) углеводороды с сопряженными двойными связями, т.е. разделенными одной простой связью. Например, бутадиен -1,3 или дивинил (CH 2 =CH–CH=CH 2), 2-метилбутадиен -1,3 или изопрен

Наибольший интерес представляют углеводороды с сопряженными двойными связями.

Структурная изомерия

1. Изомерия положения сопряженных двойных связей:

2. Изомерия углеродного скелета:

3. Межклассовая изомерия с алкинами и циклоалкенами.

Например, формуле С 4 Н 6 соответствуют следующие соединения:

Пространственная изомерия

Диены, имеющие различные заместители при углеродных атомах у двойных связей, подобно алкенам, проявляют цис-транс- изомерию.

цис -изомер (слева), транс -изомер (справа)

Физические свойства алкадиенов

Бутадиен-1,3 – легко сжижающийся газ с неприятным запахом, t°пл.= -108,9°C, t°кип.= -4,5°C; растворяется в эфире, бензоле, не растворяется в воде.

2-Метилбутадиен-1,3 – летучая жидкость, t°пл.= -146°C, t°кип.= 34,1°C; растворяется в большинстве углеводородных растворителях, эфире, спирте, не растворяется в воде.

Атомы углерода в молекуле бутадиена-1,3 находятся в sp 2 — гибридном состоянии , что означает расположение этих атомов в одной плоскости и наличие у каждого из них одной p-орбитали, занятой одним электроном и расположенной перпендикулярно к упомянутой плоскости.

Схематическое изображение строения молекул дидивинила (слева) и вид модели сверху (справа).

Перекрывание электронных облаков между С1–С2 и С3–С4 больше, чем между С2–С3.

p-Орбитали всех атомов углерода перекрываются друг с другом, т.е. не только между первым и вторым, третьим и четвертым атомами, но и также между вторым и третьим. Отсюда видно, что связь между вторым и третьим атомами углерода не является простой s-связью, а обладает некоторой плотностью p-электронов, т.е. слабым характером двойной связи. Это означает, что s- электроны не принадлежат строго определенным парам атомов углерода. В молекуле отсутствуют в классическом понимании одинарные и двойные связи, а наблюдается делокализация p-электронов, т.е. равномерное распределение p-электронной плотности по всей молекуле с образованием единого p-электронного облака.

Взаимодействие двух или нескольких соседних p-связей с образованием единого p-электронного облака, в результате чего происходит передача взаимовлияния атомов в этой системе, называется эффектом сопряжения .

Таким образом, молекула бутадиена-1,3 характеризуется системой сопряженных двойных связей.

Такая особенность в строении диеновых углеводородов делает их способными присоединять различные реагенты не только к соседним углеродным атомам (1,2-присоединение), но и к двум концам сопряженной системы (1,4-присоединение) с образованием двойной связи между вторым и третьим углеродными атомами. Отметим, что очень часто продукт 1,4-присоединения является основным.

Рассмотрим реакции галогенирования и гидрогалогенирования сопряженных диенов

Как видно, реакции бромирования и гидрохлорирования приводят к продуктам 1,2- и 1,4- присоединения , причем количество последних зависит, в частности, от природы реагента и условий проведения реакции. При галогенировании, возможно не только 1,2- и 1,4- присоединение, так при галогенировании избытком галогена происходит разрыв обеих двойных связей с образованием одинарных связей и присоединением галогена к четырем атомам углерода при бывших двойных связях.

Важной особенностью сопряженных диеновых углеводородов является, кроме того, их способность вступать в реакцию полимеризации. Полимеризация, как и у олефинов, осуществляется под влиянием катализаторов или инициаторов.

Она может протекать по схемам 1,2- и 1,4- присоединения.

В упрощенном виде реакцию полимеризации бутадиена-1,3 по схеме 1,4 присоединения можно представить следующим образом:

В полимеризации участвуют обе двойные связи диена. В процессе реакции они разрываются, пары электронов, образующие s- связи разобщаются, после чего каждый неспаренный электрон участвует в образовании новых связей: электроны второго и третьего углеродных атомов в результате обобщения дают двойную связь, а электроны крайних в цепи углеродных атомов при обобщении с электронами соответствующих атомов другой молекулы мономера связывают мономеры в полимерную цепочку.

Элементная ячейка полибутадиена представляется следующим образом:

Как видно, образующийся полимер характеризуется транс -конфигурацией элементной ячейки полимера. Однако наиболее ценные в практическом отношении продукты получаются при стереорегулярной (иными словами, пространственно упорядоченной) полимеризации диеновых углеводородов по схеме 1,4-присоединения с образованием цис -конфигурации полимерной цепи. Например, цис-

Натуральный и синтетический каучуки

Натуральный каучук получают из млечного сока (латекса) каучуконосного дерева гевеи, растущего в тропических лесах Бразилии. При нагревании без доступа воздуха каучук распадается с образованием диенового углеводорода – 2- метилбутадиена-1,3 или изопрена. Каучук – это стереорегулярный полимер, в котором молекулы изопрена соединены друг с другом по схеме 1,4-присоединения с цис -конфигурацией полимерной цепи:

цис -полиизопрен (каучук)

Молекулярная масса натурального каучука колеблется в пределах от 7 . 10 4 до 2,5 . 10 6 . транс -Полимер изопрена также встречается в природе в виде гуттаперчи.

транс -полиизопрен (гуттаперча)

Натуральный каучук обладает уникальным комплексом свойств: высокой текучестью, устойчивостью к износу, клейкостью, водо- и газонепроницаемостью. Для придания каучуку необходимых физико-механических свойств: прочности, эластичности, стойкости к действию растворителей и агрессивных химических сред – каучук подвергают вулканизации нагреванием до 130-140°С с серой. В упрощенном виде процесс вулканизации каучука можно представить следующим образом:

Атомы серы присоединяются по месту разрыва некоторых двойных связей и линейные молекулы каучука «сшиваются» в более крупные трехмерные молекулы – получается резина, которая по прочности значительно превосходит невулканизированный каучук. Наполненные активной сажей каучуки в виде резин используют для изготовления автомобильных шин и других резиновых изделий.

В 1932 году С.В. Лебедев разработал способ синтеза синтетического каучука на основе бутадиена, получаемого из спирта. И лишь в пятидесятые годы отечественные ученые осуществили каталитическую стереополимеризацию диеновых углеводородов и получили стереорегулярный каучук, близкий по свойствам к натуральному каучуку. В настоящее время в промышленности выпускают каучук,

в котором содержание звеньев изопрена, соединенных в положении 1,4, достигает 99%, тогда как в натуральном каучуке они составляют 98%. Кроме того, в промышленности получают синтетические каучуки на основе других мономеров – например, изобутилена, хлоропрена, и натуральный каучук утратил свое монопольное положение.

Реакция Реакция Дильса - Альдера (диеновый синтез)

Реакция Дильса - Альдера представляет собой согласованное реакцию -циклоприсоединения диенофилов и сопряжённых диенов с образованием шестичленного цикла.

В случае замещенных диенов и диенофилов:

Для участия в реакции -циклоприсоединения диен принимает плоскую s-цис- конформацию, в которой обе двойные связи находятся по одну сторону от одинарной C–C-связи.

В реакцию вступают циклические и ациклические сопряжённые диены, енины -C=C-C≡C- или их гетероаналоги - соединения с фрагментами -С=С-С=О, -С=С-С≡N. Диенофилами обычно являются алкены и алкины с кратной связью, активированной электроноакцепторными заместителями. В роли диенофилов также могут выступать соединения, содержащие двойные связи с гетероатомом, например >С=О, >С=N-, -СN, -N=О, -S=O, -N=N-.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Определение, гомологический ряд, номенклатура алкадиенов.

Алкадиены – органические соединения, углеводороды алифатического (ациклического) непредельного характера, в молекуле которых между атомами углерода – две двойные связи, и которые соответствуют общей формуле C n H 2 n -2 , где n =3 или n >3. Их также называют диеновыми углеводородами.

Простейшим представителем алкадиенов является пропадиен.

Гомологический ряд.

Общая формула диеновых углеводородов C n H 2n-2 . В названии алкадиенов содержится корень, обозначающий число атомов углерода в углеродной цепи, и суффикс –диен («две» «двойные связи»), обозначающий принадлежность соединения к данному классу.

C 3 H 4 – пропадиен

C 4 H 6 – бутадиен

C 5 H 8 – пентадиен

C 6 H 10 – гексадиен

C 7 H 12 – гептадиен

C 9 H 16 – нонадиен

Номенклатура алкадиенов.

1. Выбор главной цепи. Образование названия углеводорода по номенклатуре ИЮПАК начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле. В случае алкадиенов главную цепь необходимо выбирать так, чтобы в нее входили обе двойные связи.

2. Нумерация атомов главной цепи. Нумерация атомов главной цепи начинается с того конца, с которого ближе расположены по старшинству (по преимуществу):

кратная связь → заместитель → углеводородный радикал .

Т.е. при нумерации в определении названия алкадиена положение кратной связи имеет преимущество перед остальными.

Нумеровать атомы в цепи нужно таким образом, чтобы атомы углерода, связанные двойными связями, получили минимальные номера.

Если по положению двойных связей нельзя определить начало нумерации атомов в цепи, то его определяет положение заместителей так же, как для алкенов.

3. Формирование названия. , После корня, обозначающего числа атомов углерода в цепи, и суффикса –диен, обозначающий принадлежность соединения к классу алкенов, через в конце названия указывают местоположение двойных связей в углеродной цепи, т.е. номер атомов углерода, у которых начинаются двойные связи.

Если есть заместители, то в начале названия указывают цифры − номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди – два, три – три, тетра − четыре, пента − пять) и название заместителя (метил. этил, пропил). Затем без пробелов и дефисов − название главной цепи. Главная цепь называется как углеводород − член гомологического ряда влкадиенов (пропадиен, бутадиен, пентадиен и т.д.).

ОПРЕДЕЛЕНИЕ

Алкадиены – ненасыщенные углеводороды, содержащие две двойные связи.

Общая формула алкадиенов C n H 2 n -2

По взаимному расположению двойных связей все алкадиены подразделяют на: кумулированные (связи находятся в положениях 1 и 2) (1), сопряженные (двойные связи расположены через одну одинарную связь) (2) и изолированные (две двойные связи разделяет больше, чем одна одинарная связь –С-С-) (3):

CH 2 = C = CH 2 пропадиен -1,2 (1);

СН 3 -СН = СН-СН = СН 2 пентадиен – 1,3 (2);

СН 2 = СН-СН 2 -СН 2 -СН = СН-СН 3 гептадиен -1,5 (3).

В молекулах алкадиенов атомы углерода находятся в sp 2 гибридизации. Атом углерода, связанный двойными связями с двух сторон, имеющийся в составе кумулированных алкадиенов, находится в sp-гибридизации.

Для всех алкадиенов, начиная с пентадиена, характерна изомерия углеродного скелета (1) и изомерия положения двойных связей (2); для алкадиенов, начиная с пентадиена — 1,3, характерная цис-транс изомерия. Поскольку общая формула алкадиенов совпадает с фомудой для алкинов, следовательно, между этими классами соединений возможна межклассовая изомерия (3).

CH 2 = C = C(СН 3)-СН 3 3-метилбутадиен – 1,2 (1).

CH 2 = C = CH-CH 2 -CH 3 пентадиен – 1,2 ;

СН 3 -СН = СН-СН = СН 2 пентадиен – 1,3 (2).

CH 2 = C = CH 2 пропадиен -1,2 ;

СН≡С-СН 3 пропин (3).

Химические свойства алкадиенов

Для алкадиенов характерны реакции, протекающие по механизмам электрофильного и радикального присоединения, причем, наиболее реакционноспособными являются сопряженные алкадиены.

Галогенирование. При присоединении к алкадиенам хлора или брома образуются тетрагалогеноалканы, причем, возможно образование продуктов как 1,2-, так и 1,4- присоединения. Соотношение продуктов зависит от условий проведения реакции: типа растворителя и температуры.

CH 2 = CH-CH = CH 2 + Br 2 (гексан) → CH 2 (Br)-CH(Br)-CH = CH 2 + CH 2 (Br)-CH = CH-CH 2 -Br

При температуре -80С соотношение продуктов 1,2 – и 1,4 – присоединения – 80/20%; -15С – 54/46%; +40С – 20/80%; +60С – 10/90%.

Присоединение галогенов возможно и по радикальному механизму – под действием УФ-излучения. В этом случае также происходит образование смеси продуктов 1,2 – и 1,4 – присоединения.

Гидрогалогенирование протекает подобно галогенированию, т.е. с образованием смеси продуктов 1,2 – и 1,4 – присоединения. Соотношение продуктов в основном зависит от температуры, так, при высоких температурах преобладают продукты 1,2 – присоединения, а при низких — 1,4 – присоединения.

CH 2 = CH-CH = CH 2 +HBr → CH 3 -CH(Br)-CH = CH 2 + CH 3 -CH = CH-CH 2 -Br

Реакция гидрогалогенирования может протекать в водной или спиртовой среде, в присутствии хлорида лития или в среде CHal 4 , где Hal – галоген.

(диеновый синтез). В таких реакциях участвуют два компонента – диен и ненасыщенное соединение – диенофил. При этом образуется замещенный шестичленный цикл. Классический пример реакции диенового синтеза – реакция взаимодействия бутадиена – 1,3 с малеиновым ангидридом:


Гидрирование алкадиенов происходит в условиях жидкого аммиака и приводит к образованию смеси продуктов 1,2 – и 1,4 – присоединения:

CH 2 = CH-CH = CH 2 + H 2 → CH 3 -CH 2 -CH = CH 2 + CH 3 -CH = CH-CH 3 .

Кумулированные алкадиены способны вступать в реакции гидратации в кислой среде, т.е. присоединяют молекулы воды. При этом происходит образование неустойчивых соединений – енолов (непредельные спирты), для которых характерно явление кето-енольной таутомерии, т.е. енолы практически сразу же переходят в форму кетонов и обратно:

CH 2 = C = CH 2 + H 2 O → CH 2 = C(OH)-CH 3 (пропенол) ↔ СH 3 -C(CH 3) = O (ацетон).

Реакции изомеризации алкадиенов протекают в щелочной среде при нагревании и в присутствии катализатора – оксида алюминия:

R-CH = C = C-CH-R → RC≡C-CH 2 -R.

Полимеризация алкадиенов может протекать как 1,2 – или 1,4 – присоединение:

nCH 2 = CH-CH = CH 2 → (-CH 2 -CH = CH-CH 2 -) n .

Физические свойства алкадиенов

Низшие диены - бесцветные легкокипящие жидкости. 1,3-Бутадиен и аллен (1,2 — пропадиен) - легко сжижающиеся газы, обладающие неприятным запахом. Высшие диены представляют собой твердые вещества.

Получение алкадиенов

Основные способы получения алкадиенов – дегидрирование алканов (1), реакция Лебедева (2), дегидратация гликолей (3), дегалагенирование дигалогенпроизводных (4) алкенов и реакции перегруппировки (5):

CH 3 -CH 2 -CH 2 -CH 3 → CH 2 = CH-CH = CH 2 (1);

2C 2 H 5 OH → CH 2 = CH-CH = CH 2 + 2H 2 O + H 2 (2);

CH 3 -CH(OH)-CH 2 -CH 2 -OH → CH 2 = CH-CH = CH 2 + 2H 2 O (3);

СH 2 = C(Br)-CH 2 -Br + Zn → CH 2 = C = CH 2 + ZnBr 2 (4);

HC≡C-CH(CH 3)-CH 3 + NaOH → CH 2 = C = CH(CH 3)-CH 3 (5).

Основная сфера использования диенов и их производных – это производство каучука.

Примеры решения задач

ПРИМЕР 1

Задание Какой объем водорода потребуется для каталитического гидрирования одной двойной связи диенового углеводорода (C n H 2 n -2) массой 5,4 г, если на бромирование такого же количества углеводорода до тетрабромида (C n H 2 n -2 Br 4) пошло 32 г брома. Каков состав углеводорода? Напишите все возможные изомеры.
Решение Запишем уравнения реакций каталитического гидрирования и бромирования алкадиена в общем виде:

C n H 2 n -2 + H 2 → C n H 2 n (1)

C n H 2 n -2 + 2Br 2 → C n H 2 n -2 Br 4 (2)

Молярная масса брома (молекулярная масса одного моль брома), вычисленная по таблице химических элементов Д.И. Менделеева:

M(Br 2) = 160 г/моль.

Тогда, зная массу брома (32 г по условию задачи), можно вычислить количество вещщества брома:

v(Br 2) = m(Br 2)/M(Br 2),

v(Br 2) = 32/160 = 0,2 моль.

По уравнению 2, 5,4 Г углеводорода – это 0,1 моль, а на гидрирование одной двойной связи его необходимо 0,1 моль водорода или 0,1×22,4 = 2,24 л водорода.

Молярная масса углеводорода:

M(C n H 2 n -2) = m(C n H 2 n -2)/v(C n H 2 n -2),

M(C n H 2 n -2) = 5,4/0,1 = 54 г/моль.

Значит, искомый углеводород – это бутадиен.

Для бутадиена характерны следующие изомеры:

CH 2 = C = CH-CH 3 бутадиен-1,2

СH 2 = CH-CH = CH 2 бутадиен-1,3

СH≡C-CH 2 -CH 3 бутин-1

СН 3 -С≡C-СН 3 бутин-2

Ответ Объем водорода – 2,24 л. Бутадиен.

4.1. Изомерия и номенклатура диенов

Диеновые углеводороды имеют две двойные связи в молекуле, т. е. на четыре атома водорода меньше, чем соответствующие им предельные уг­леводороды. Общая формула алкадиенов С n Н 2 n -2 . Поскольку для образо­вания двух двойных связей необходимо по крайней мере три атома углеро­да, в этом ряду гомологи с одним и двумя атомами углерода не существуют.

В зависимости от взаимного расположения двойных связей диеновые углеводороды можно разделить на три основных типа:

    диены с кумуллированными двойными связями, т.е. с двойными связями у одного углеродного атома (алленовые);

    диены с конъюгированными (сопряженными) двойными связями;

3) диены с изолированными двойными связями

Диены по систематической номенклатуре называются так же, как и этиленовые углеводороды, только вместо суффикса -ен ста­вится суффикс -адиен (так как двойных связей две). Положение двойных связей, как обычно, показывают цифрами. Для некоторых диенов сохра­нились тривиальные или старые рациональные названия:

СН 2 =С = СН 2 пропадиен, аллен

СН 3 -СН=С=СН 2 1,2-бутадиен, метилаллен

СН 2 =СН-СН=СН 2 1,3-бутадиен, дивинил

2-метил-1,3-бутадиен, изопрен

СН 3 -СН=СН-СН=СН 2 1,3-пентадиен, пиперилен

2,3-диметил-1,3-бутадиен

СН 2 =СН-СН 2 -СН 2 -СН=СН 2 1,5-гексадиен, диаллил

4.2. Способы получения диенов

Способы получения углеводородов диенов в большинстве слу­чаев не отличаются от способов получения олефинов, только соответству­ющие реакции необходимо проводить дважды или в качестве исходного вещества применять соединения, уже содержащие двойную связь.

4.2.1. Дегидрирование алкан-алкеновых фракций:

Дегидрирование бутан-бутеновых и пентан-пентеновых фракций над катализаторами (обычно используется Cr 2 О 3) приводят к образованию диенов:

4.2.2. Получение дивинила и изопрена дегидратацией гликолей

4.2.3. Дегидратация непредельных спиртов

4.2.4. Получение дивинила димеризацией ацетилена с последующим гидрированием

4.2. 5 . Синтез Реппе

Синтез основан на высокой подвижности водорода у тройной связи, благодаря чему он легко вступает во взаимодействие с карбонильными соединениями, в том числе и с метаналем:

Аналогично получают изопрен (способ Фаворского), используя в качестве карбонильного соединения ацетон.

4.3. Физические свойства и строение диенов

Алены (1,2-диены). В молекуле аллена и других соединений с кумулированными связями, π-связи располагаются в двух взаимно перпендикулярных плоскостях. Плоскости, в которых распо­лагаются две пары водородных атомов, также взаимно перпендикулярны. Два крайних угле­родных атома алленовой системы находятся в состоянии sp 2 -гибридизации, средний – sp-гибридизации (рис. 4).

Эти особенности квантово-механического строения проявляются в физических и химиче­ских свойствах алленов. В частности, в ряду алленов при двух различных заместителях у конеч­ных углеродных атомов возможна оптическая активность благодаря молекулярной асиммет­рии. Два пространственных изомера, относящи­еся друг к другу как предмет к своему зеркально­му изображению, при наложении не совпадают и, следовательно, представляют собой две раз­личные изомерные молекулы.

Рис. 4. Строения молекулы аллена

Для алленов характерны легкость гидрата­ции разбавленной серной кислотой с образова­нием кетонов, способность полимеризоваться или конденсироваться с другими непредельны­ми соединениями с образованием четырехчлен­ных циклов (С. В. Лебедев):

Сопряженные диены (1,3-диены). Сопряженные диены отличаются от алкенов большей устойчивостью, а также спо­собностью вступать в реакции присоединения по атомам 1,2 и 1,4 и большей ре­акционной способностью.

Две сопряженные π-связи образуют общее электронное облако - все четыре углеродных атома находятся в состоянии sp 2 -гибридизации. Это приводит к укорочению простой связи и к стабилизации молекулы. В молекуле дивинила π -связи образованы за счет перекрывания р-орбиталей атомов С 1 и С 2 , Сз и С 3 . Также возможно перекрыва­ние р-орбиталей атомов С 2 и С 3 . Возникающая в результате этого делокализация π -электронов делает молекулу более устойчивой, поскольку каждая пара электро­нов притягивается не двумя, а четырьмя ядрами углерода:

Рис. 5. Строение молекулы дивинила

Связь С 2 – С 3 приобретает некоторый характер двоесвязанности. Длина ее меньше, чем в алканах (1,48 Å), что вызвано эффектом сопряжения. Это и объяс­няет поведение диенов в реакциях электрофильного присоединения, где реагент может присоединяться не только к соседним атомам при кратной связи (1,2-присоединение), но и к двум концам сопряженной системы (1,4-присоединение).

Физические свойства диенов. Дивинил при обычных условиях – газ. Изопрен и другие простейшие алкадиены – жидкости. Обычные закономерности, свойственные гомо­логическим рядам углеводородов, действуют и в этом ряду.

Для алкадиенов с сопряженными двойными связями характерны ано­мально высокие показатели преломления света. Благодаря этой особен­ности найденные молекулярные рефракции алкадиенов значительно боль­ше вычисленных. Разница между найденной и вычисленной величинами составляет обычно 1–1,5 единицы. Она называется молекулярной экзальтацией .

Алкадиены поглощают ультрафиолетовое излучение в значительно бо­лее длинноволновой области, чем алкены. Например, 1,3-бутадиен погло­щает при 217 нм. Накопление в молекуле сопряженных двойных связей ведет к дальнейшему смещению максимума поглощения из ультрафиоле­товой области в видимую область: при четырех сопряженных двойных связях появляется желтая окраска.

В ИК-спектрах для 1,3-алкадиенов характерно снижение частоты и увеличение интенсивности полосы валентных колебаний двойных связей (примерно до 1600 см -1).

Наибольшее практическое значение имеют сопряженные диены.

Диеновые углеводороды (диолефины, алкадиены, диены) - насыщенные углеводороды, в структуре которых есть две двойные связи. Учитывая химическую структуру, алкадиены разделяются на три типа: I тип - диолефины с кумулированными связями (СН2ССН2); II тип - алкадиены со спряженными (конъюгированными) связями; двойные связи в структуре диена разделены простой связью (Н2ССНСНСН2); III тип - диены с изолированными связями (Н2ССН2СН2СНСН2).

Диеновые углеводороды: общая характеристика

Из трех типов диенов наибольший интерес для химической промышленности представляют алкадиены II типа. С помощью электронографии установлено, что двойные связи в молекуле бутадиена между С1 и С4 длиннее, чем в молекуле этилена.

Диеновые углеводороды: изомерия

Для данных характерно два вида изомерии - пространственная (стереоизомерия) и структурная. Первый вид - изомерия строения углеводородной цепи, которая может быть прямой или разветвленной. Второй тип изомерии обусловлен пространственной локализацией атомов и атомных групп возле двойных связей. Таким образом, образуются транс- и цис-изомеры диенов. Например, для диена с молекулярной формулой С5Н8 существует три структурных изомера:

СН2СНСН2СНСН2; СН2С(СН3)СНСН2; СН3СНСНСН2.

Диеновые углеводороды: номенклатура

Для названия диенов пользуются двумя номенклатурами - исторической (например, дивини, ален) и ИЮПАК (Международный союз теоритической и прикладной химии). Согласно номенклатуре ИЮПАК, сначала называется соответствующий диену алкан, в названии которого суффикс «ан» заменяют на «диен», после этого цифрами указывается место локализации двойных связей в углеводородной цепи. Нумерацию углеводородной цепи проводят так, чтобы цифры имели наименьшее значение. Приведенные выше формулы диенов по номенклатуре ИЮПАК будут называться так: 1,4-пентадиен; 2-метил-1,3-бутадиен; 1,3-пентадиен.

Существует целый ряд промышленных и лабораторных методов синтеза диенов. Основными из них являются деполимеризация природного каучука (сухая перегонка), метод каталитической дегидратации алканов, метод дегидратации одноатомных насыщенных спиртов.

Бутадиен - ценное сырье для получения (бутадиен-нитрильного, бутадиенового, стирольного), а также перхлорвинила. Изопрен - вещество с характерным запахом. Впервые изопрен получен из натурального каучука методом сухой перегонки. Изопрен получают также путем дегидратации изопентана. Используют для получения синтетических каучуков, лекарственных и ароматических веществ.

Каучуки - эластичный и очень крепкий материал органического происхождения, который получают из природного сырья и синтетическими способами (синтетический). Основой каучука являются молекулы диенов со спряженными двойными связями. В процессе обработки этого материала серой и нагревания (вулканизации) образуется резина. Каучуки - очень важное сырье для производства шин и камер, изоляционных полосок, резиновых рукавичек, обуви и других предметов, используемых в промышленности, хозяйстве, быту, медицине и ветеринарии.

Этиленовые углеводороды в своей структуре имеют одну двойную связь. Иногда эти соединения называют олефинами, поскольку низшие газообразные алкены, вступая в реакции с хлором или бромом, образуют маслянистые соединения, которые нерастворимы в воде.

Ацетиленовые углеводороды (алкины) - соединения, в которых содержится одна тройная связь. Наибольшее значение из всех алкинов имеет ацетилен, который получают при взаимодействии с водой. Этот газ используется при автогенном сваривании и резке металлов. Ацетилен - ценное сырье для этилового спирта, ацетальдегида, винилацетилена, ацетатной кислоты, бензола, трихлорэтана, акрилнитрила.