Динамика потребления кислорода человеком в покое и при работе. Потребность в кислороде и его запасы в организме Что делает кислород в организме

Для обеспечения жизнедеятельности любого живого организма необходимо постоянно поддерживать определенный уровень обмена веществ как между органами и тканями внутри организма, так и с внешней средой. Из внешней среды организм получает питательные вещества, которые он частично превращает в собственные ткани, во внешнюю среду отдает продукты своей жизнедеятельности ненужные или даже вредные для организма. Таким образом, наличие обмена веществ определяет сам факт жизни организма.
Для обеспечения обмена веществ необходима энергия. В организме высших животных энергия образуется в результате сложных биохимических реакций, основу которых составляют процессы окисления.

Основным субстратом , подвергающимся окислению, являются углеводы. Доля углеводов как субстрата для выработки энергии среди других веществ, составляет более 80%. В процессе окисления принимают участие также жирные кислоты и амиокислоты.

Единственным окислителем является кислород (аэробный гликолиз). При недостатке кислорода начинает функционировать более древний механизм выработки энергии - анаэробный гликолиз, эффективность которого в 18 раз меньше.
В процессе сложных биохимических преобразований вещества , участвующие в обменных процессах, расщепляются в основном до , двуокиси углерода (углекислый газ) и мочевины, которые и удаляются из организма соответствующими органами. В здоровом организме этот окислительный процесс сопровождается выделением энергии, составляющей приблизительно 3000-3500 Ккал.

Поскольку выработка энергии является одним из наиболее важных критериев жизнедеятельности организма, то постоянный контроль (мониторинг) этого параметра может быть существенным фактором получения информации. Особенно актуальной регистрация энергетики является у больных в критических состояниях при проведении реанимации и интенсивной терапии.
Основной проблемой для поддержания обмена веществ является проблема кислорода, т.к. его запасы столь незначительны, что позволяют осуществлять жизнедеятельность организма всего лишь несколько минут.

Содержание кислорода в крови при дыхании атмосферным воздухом составляет 850 мл., при дыхании 100% кислородом - 950 мл. Запасы кислорода в легких содержатся в их функциональной остаточной емкости (ФОЕ) и при дыхании воздухом составляют 450 мл, а при дыхании 100% кислородом - 3000 мл. В незначительных количествах (250-300 мл) кислород содержится в тканях в растворенном или связанном состоянии. Таким образом, общие запасы кислорода в организме составляют около 1,5 литров при дыхании воздухом и несколько больше четырех литров при дыхании 100% кислородом.

Если учесть, что в покое человек потребляет около 250 мл кислорода в 1 минуту, а при физической нагрузке и различных патологических состояниях потребление 02 увеличивается в несколько раз, то становится очевидным, что запасов кислорода может хватить не более, чем на 5-6 минут.
Именно поэтому в процессе эволюции высших организмов появились системы органов, призванных обеспечить в организме непрерывное поступление кислорода.

Это прежде всего система крови , в которой кислород аккумулируется в виде раствора в плазме и химической связи с гемоглобином.
Это система органов дыхания (ротовая полость, глотка, гортань, трахея, бронхи и легкие), в которой осуществляется переход кислорода из внешней среды в кровь и углекислого газа из крови во внешнюю среду (газообмен).
Это система органов кровообращения , которая обеспечивает транспорт кислорода к органам и тканям и выведение углекислого газа.


А. М. Чарный,


"Патофизиология гипоксических состояний".
Медгиз, М., 1961 г.

Публикуется с небольшими сокращениями.

Важность кислорода для сохранения жизни организма бесспорна. Если сравнить между собой существенно необходимые для жизни организма ингредиенты - воду, питательные вещества и кислород, то окажется, что расстройство кислородного бюджета в каком-либо из звеньев наиболее быстро приводит к смерти. В организме человека, как наиболее высоко организованной форме жизни, функциональная способность жизненно важных органов существенно зависит от непосредственного снабжения их кислородом. Поэтому можно предполагать, что любое патологическое состояние тесно связано с нарушениями в кислородном бюджете организма.


Понятие «кислородный бюджет» включает весь комплекс вопросов, касающихся потребности организма в кислороде, законов проникновения кислорода в клетки и жидкости организма, транспорта его через кровеносную систему и механизма его использования в тканях. Между потреблением кислорода и выработкой энергии в организме были установлены определенные количественные соотношения. Энергетической основой жизнедеятельности организма является постоянное окисление пищевых веществ. В условиях белкового питания при потреблении 1 л кислорода образуется 4,48 ккал, при питании жиром - 4,69 ккал, при исключительно углеводной пище - 5,05 ккал тепла. Потребление 1 л кислорода в условиях смешанного питания сопровождается образованием 4,8 ккал тепла.
... Таким образом, человек в покое при минимальном газообмене потребляет около 250 мл кислорода в минуту. В то же время образуется около 200 мл углекислоты. При тяжелой мышечной работе потребление кислорода увеличивается в 10 и более раз, что составляет примерно 2500-3000 мл кислорода в минуту. Это положение подтверждается данными, полученными при изучении отдельных органов в покое и при напряженной деятельности.
... При напряженной деятельности потребление кислорода значительно возрастает.
Запасы кислорода в организме человека крайне невелики; их может хватить для жизнедеятельности на 5-6 минут.
... По вычислениям Баркрофта, количество крови у кита составляет приблизительно 8000 л при общем весе его 122 000 кг. Отсюда следует, что количественные соотношения между весом тела и объемом крови у кита приблизительно того же порядка, что и у человека. Те же соотношения существуют в организме других ныряющих животных (тюлень). Сопоставление запасов кислорода в организме человека и ныряющих животных дает ясную картину незначительности этого запаса у человека и ныряющих животных. Длительное пребывание ныряющих животных под водой без доступа атмосферного кислорода и при малых запасах его в организме оказывается возможным благодаря низкой интенсивности обмена веществ. Весьма малые запасы кислорода у человека полностью удовлетворяют его физиологические потребности при условии постоянного пополнения этого запаса из внешнего воздуха . Это достигается регуляцией снабжения организма кислородом и удалением углекислоты, которая осуществляется автоматически и при больших скоростях. Условия для этого, надо полагать, были созданы на определенной стадии развития организма и являлись причиной того, что жизненно необходимый для организма газ стал легко абсорбироваться кровью и быстро отдаваться тканям. Этими условиями являются: физические свойства и законы проникновения кислорода в клетки и жидкости организма, транспорт кислорода через кровеносную систему и механизм использования кислорода в тканях.

ОСНОВНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА КИСЛОРОДА И ЗАКОНЫ ПРОНИКНОВЕНИЯ ЕГО В ЖИДКИЕ СРЕДЫ ОРГАНИЗМА

В крови и тканях организма имеется около 20 л углекислого газа, 1 л кислорода и 1 л азота. По закону Дальтона давление газа в смеси не зависит от содержания других компонентов в смеси и равно тому давлению, которое оказывало бы это количество газа , если бы оно одно занимало данный объем. Это давление называется парциальным давлением газа.
Парциальное давление кислорода в клетках, крови и жидкостях организма является важным фактором, обусловливающим его нормальную жизнедеятельность. Парциальное давление кислорода в клетках представляет собой внутриклеточное газовое давление, а в тканевой жидкости и лимфе - внеклеточное. Кемлбелл методом образования газового пузыря показал, что при любом объеме данного газа в ограниченной полости после выравнивания в условиях покоя парциальное его давление остается постоянным. Снабжение организма кислородом обеспечивается дыхательной системой, кровью и тканями. Что касается дыхательной системы, то здесь поступление кислорода подчинено законам проникновения газов через мембраны и диффузии их в жидкости.

ДИФФУЗИЯ КИСЛОРОДА ЧЕРЕЗ ЛЕГОЧНУЮ МЕМБРАНУ

Существенным фактором для газообмена между кровью и воздухом является величина дыхательной поверхности и толщина тканевого слоя между легочными капиллярами и альвеолами.


Еще Эбби (1880) указал, что дыхательная поверхность легких составляет 80 м2 при поперечнике спавшихся альвеол 0,2 мм.
Величина дыхательной поверхности легких, приводимая Цунтцем при учете им содержания воздуха в легочных альвеолах , диаметра альвеолы (0,2 мм) и ее поверхности (0,126 см2) при условии, что в легких человека находится около 725 млн. альвеол, составляет 90 м2.
Бор иначе подошел к расчету легочной поверхности. То количество газа, которое при давлении 760 мм ртутного столба проникает в 1 минуту через 1 см2 поверхности, он обозначил как инвазионный коэффициент.
... Толщина стенки, отделяющей полость альвеолы от полости капилляра, по согласованным данным многочисленных исследователей, составляет 0,004 мм. В дальнейшем оказалось, что для диффузии газов имеет значение абсорбция газов жидкостью, молекулярный вес, масса отдельных газовых молекул, давление на пограничных слоях жидкости, толщина слоя жидкости и т. п.
Количество газа, абсорбируемое единицей объема жидкости при атмосферном давлении, носит название абсорбционного коэффициента Бунзена (а). Стефан ввел понятие диффузионного коэффициента (К) - константы, зависящей от природы диффундирующего газа, жидкости и температуры.
... Таким образом, скорость диффузии газа прямо пропорциональна абсорбционному коэффициенту, различию давления диффундирующего газа по обе стороны жидкости, константе диффузии и обратно пропорциональна барометрическому давлению и толщине перегородки. Леви и Цунтц предложили вместо диффузионного коэффициента учитывать диффузионный фактор (С). Последний (на том основании, что диффузионный коэффициент пропорционален квадратному корню из молекулярного веса) выводится из диффузионного коэффициента при умножении на квадратный корень из молекулярного веса газа.
... В дальнейшем опыты Леви и Цунтца показали, что диффузия через легочную ткань происходит в 2 раза быстрее, чем через воду. Экснер объясняет это наличием липоидной мембраны. Таким образом, оказалось, что диффузионный фактор для легких будет составлять 0,139 вместо 0,065 для воды.
На основании имеющихся данных можно рассчитать, сколько кислорода может проникнуть в минуту при нормальных дыхательных движениях через 1 см2 альвеолярной стенки и, следовательно, через нормальные легкие человека.
... Через всю легочную поверхность (90 м2) за минуту проникает 90 X 10000 X 0,006756 = 6080 мл кислорода. Таким образом, структура легких обеспечивает возможность проникновения в кровь около 6080 мл кислорода в минуту. Учитывая, что потребление кислорода взрослым человеком в покое составляет 250 мл в минуту, а при напряженной мышечной работе около 3000-4000 мл, можно сделать вывод, что снабжение организма кислородом обеспечивается легкими в избытке.
Эти данные позволяют заключить, что самая напряженная работа может быть обеспечена соответствующей доставкой кислорода и что при патологических условиях, связанных с выключением большой доли легочной поверхности из

Продолжение

В начале этой статьи речь идет о том, что столь страшное для многих людей слово «химия» в применении к пищевым продуктам, присутствует везде. Кальций, кислород, магний, железо и другие, жизненно важные для организма человека, вещества - это все есть химия. Важно только знать, чего и сколько человеку требуется для поддержания молодости и здоровья. В продолжении этой статьи - описание свойств и важности для организма человека тех или иных химических веществ.

Роль кислорода для организма человека

Кислород - это восьмой элемент таблицы химических элементов Менделеева. На нашей планете есть низшие формы существания, которые не приемлют кислорода и обходятся вовсе без воздуха. Но для человека кислород жизненно необходим. Без него не будет работать весь организм, а легкие потеряют свою актуальность.

В свободном состоянии кислород представляет собой газообразное вещество. Но при низких температурах может превращаться в жидкость или даже кристаллизуется.

Молекула кислорода состоит всего из 2-х атомов кислорода - О 2. А вот молекула озона, который по сути является формой кислорода и абсолютно незаменима для существования жизни на планете Земля имеет 3 атома кислорода - О 3 . Разрушение озонового слоя в атмосфере Земли приводит к повышению радиации, к разрушению природы, к появлению все новых и новых форм заболеваний.

Где на Земле есть кислород?

Кроме атмосферы кислород еще присутствует в земной коре. При этом интересно то, что, по сравнению со всеми остальными элементами, кислорода приходится аж до 47%. Содержится он в земной коре в форме различных соединений. В мировом океане, включая и пресные воды, содержание кислорода во всевозможных соединениях составляет почти 86%. А вот в атмосфере его всего 23%.

Кроме атмосферы, земли и воды кислород входит в состав клеток абсолютно всех живых организмов и во множество органических веществ.

Это интересно! В холодной воде мирового океана кислорода больше, чем в теплой.

В каких процессах организма принимает участие кислород

Кислород - это сильнейший окислитель. Поэтому он принимает участие во всех окислительных реакциях организма человека.

Кроме того, что человек дышит и с воздухом получает кислород, это вещество также применяют дополнительно в медицине и в пищевой промышленности.

В медицине кислород применяют в кислородных баллонах и ингаляторах для лечения различных заболеваний дыхательной системы, в общей анестезии при хирургических операциях.

В пищевой промышленности кислород применяют в качестве газа-наполнителя и пропеллента (газообразующего вещества для смесей продуктов). Кислород зарегистрирован в качестве пищевой добавки Е-948.

Кислород позволяет дышать и поддерживать существование. В этом заключается его главная биологическая роль. Он принимает участие в процессах обмена веществ, в разложении и усвояемости различных питательных веществ.

Справочник лекарств >> Лечение ДЦП >> О болезнях >> Лекарственные растения >> Лечение за рубежом >> Книги по медицине >>

ПОТРЕБНОСТЬ В КИСЛОРОДЕ И ЕГО ЗАПАСЫ В ОРГАНИЗМЕ

А. М. Чарный,
"Патофизиология гипоксических состояний".
Медгиз, М., 1961 г.

Публикуется с небольшими сокращениями.

Важность кислорода для сохранения жизни организма бесспорна. Если сравнить между собой существенно необходимые для жизни организма ингредиенты - воду, питательные вещества и кислород, то окажется, что расстройство кислородного бюджета в каком-либо из звеньев наиболее быстро приводит к смерти. В организме человека, как наиболее высоко организованной форме жизни, функциональная способность жизненно важных органов существенно зависит от непосредственного снабжения их кислородом. Поэтому можно предполагать, что любое патологическое состояние тесно связано с нарушениями в кислородном бюджете организма.
Понятие «кислородный бюджет» включает весь комплекс вопросов, касающихся потребности организма в кислороде, законов проникновения кислорода в клетки и жидкости организма, транспорта его через кровеносную систему и механизма его использования в тканях. Между потреблением кислорода и выработкой энергии в организме были установлены определенные количественные соотношения. Энергетической основой жизнедеятельности организма является постоянное окисление пищевых веществ. В условиях белкового питания при потреблении 1 л кислорода образуется 4,48 ккал, при питании жиром - 4,69 ккал, при исключительно углеводной пище - 5,05 ккал тепла. Потребление 1 л кислорода в условиях смешанного питания сопровождается образованием 4,8 ккал тепла.
... Таким образом, человек в покое при минимальном газообмене потребляет около 250 мл кислорода в минуту. В то же время образуется около 200 мл углекислоты. При тяжелой мышечной работе потребление кислорода увеличивается в 10 и более раз, что составляет примерно 2500-3000 мл кислорода в минуту. Это положение подтверждается данными, полученными при изучении отдельных органов в покое и при напряженной деятельности.
... При напряженной деятельности потребление кислорода значительно возрастает.
Запасы кислорода в организме человека крайне невелики; их может хватить для жизнедеятельности на 5-6 минут.
... По вычислениям Баркрофта, количество крови у кита составляет приблизительно 8000 л при общем весе его 122 000 кг. Отсюда следует, что количественные соотношения между весом тела и объемом крови у кита приблизительно того же порядка, что и у человека. Те же соотношения существуют в организме других ныряющих животных (тюлень). Сопоставление запасов кислорода в организме человека и ныряющих животных дает ясную картину незначительности этого запаса у человека и ныряющих животных. Длительное пребывание ныряющих животных под водой без доступа атмосферного кислорода и при малых запасах его в организме оказывается возможным благодаря низкой интенсивности обмена веществ. Весьма малые запасы кислорода у человека полностью удовлетворяют его физиологические потребности при условии постоянного пополнения этого запаса из внешнего воздуха. Это достигается регуляцией снабжения организма кислородом и удалением углекислоты, которая осуществляется автоматически и при больших скоростях. Условия для этого, надо полагать, были созданы на определенной стадии развития организма и являлись причиной того, что жизненно необходимый для организма газ стал легко абсорбироваться кровью и быстро отдаваться тканям. Этими условиями являются: физические свойства и законы проникновения кислорода в клетки и жидкости организма, транспорт кислорода через кровеносную систему и механизм использования кислорода в тканях.

ОСНОВНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА КИСЛОРОДА И ЗАКОНЫ ПРОНИКНОВЕНИЯ ЕГО В ЖИДКИЕ СРЕДЫ ОРГАНИЗМА

Обмен веществ в животном организме совершается таким образом, что в нем участвуют не только плотные и жидкие, но и газообразные вещества. Восприятие организмом кислорода и выделение газообразного продукта обмена - углекислого газа известно под названием газообмена. Главным путем переноса кислорода от легких к тканям и транспорта углекислого газа является кровеносная система. В связи с этим представляется важным выяснить, в каком количестве и в виде каких соединений эти газы находятся в крови и тканях.
В крови и тканях организма имеется около 20 л углекислого газа, 1 л кислорода и 1 л азота. По закону Дальтона давление газа в смеси не зависит от содержания других компонентов в смеси и равно тому давлению, которое оказывало бы это количество газа, если бы оно одно занимало данный объем. Это давление называется парциальным давлением газа.
Парциальное давление кислорода в клетках, крови и жидкостях организма является важным фактором, обусловливающим его нормальную жизнедеятельность. Парциальное давление кислорода в клетках представляет собой внутриклеточное газовое давление, а в тканевой жидкости и лимфе - внеклеточное. Кемлбелл методом образования газового пузыря показал, что при любом объеме данного газа в ограниченной полости после выравнивания в условиях покоя парциальное его давление остается постоянным. Снабжение организма кислородом обеспечивается дыхательной системой, кровью и тканями. Что касается дыхательной системы, то здесь поступление кислорода подчинено законам проникновения газов через мембраны и диффузии их в жидкости.

ДИФФУЗИЯ КИСЛОРОДА ЧЕРЕЗ ЛЕГОЧНУЮ МЕМБРАНУ

Существенным фактором для газообмена между кровью и воздухом является величина дыхательной поверхности и толщина тканевого слоя между легочными капиллярами и альвеолами.
Еще Эбби (1880) указал, что дыхательная поверхность легких составляет 80 м2 при поперечнике спавшихся альвеол 0,2 мм.
Величина дыхательной поверхности легких, приводимая Цунтцем при учете им содержания воздуха в легочных альвеолах, диаметра альвеолы (0,2 мм) и ее поверхности (0,126 см2) при условии, что в легких человека находится около 725 млн. альвеол, составляет 90 м2.
Бор иначе подошел к расчету легочной поверхности. То количество газа, которое при давлении 760 мм ртутного столба проникает в 1 минуту через 1 см2 поверхности, он обозначил как инвазионный коэффициент.
... Толщина стенки, отделяющей полость альвеолы от полости капилляра, по согласованным данным многочисленных исследователей, составляет 0,004 мм. В дальнейшем оказалось, что для диффузии газов имеет значение абсорбция газов жидкостью, молекулярный вес, масса отдельных газовых молекул, давление на пограничных слоях жидкости, толщина слоя жидкости и т. п.
Количество газа, абсорбируемое единицей объема жидкости при атмосферном давлении, носит название абсорбционного коэффициента Бунзена (а). Стефан ввел понятие диффузионного коэффициента (К) - константы, зависящей от природы диффундирующего газа, жидкости и температуры.
... Таким образом, скорость диффузии газа прямо пропорциональна абсорбционному коэффициенту, различию давления диффундирующего газа по обе стороны жидкости, константе диффузии и обратно пропорциональна барометрическому давлению и толщине перегородки. Леви и Цунтц предложили вместо диффузионного коэффициента учитывать диффузионный фактор (С). Последний (на том основании, что диффузионный коэффициент пропорционален квадратному корню из молекулярного веса) выводится из диффузионного коэффициента при умножении на квадратный корень из молекулярного веса газа.
... В дальнейшем опыты Леви и Цунтца показали, что диффузия через легочную ткань происходит в 2 раза быстрее, чем через воду. Экснер объясняет это наличием липоидной мембраны. Таким образом, оказалось, что диффузионный фактор для легких будет составлять 0,139 вместо 0,065 для воды.
На основании имеющихся данных можно рассчитать, сколько кислорода может проникнуть в минуту при нормальных дыхательных движениях через 1 см2 альвеолярной стенки и, следовательно, через нормальные легкие человека.
... Через всю легочную поверхность (90 м2) за минуту проникает 90 X 10000 X 0,006756 = 6080 мл кислорода. Таким образом, структура легких обеспечивает возможность проникновения в кровь около 6080 мл кислорода в минуту. Учитывая, что потребление кислорода взрослым человеком в покое составляет 250 мл в минуту, а при напряженной мышечной работе около 3000-4000 мл, можно сделать вывод, что снабжение организма кислородом обеспечивается легкими в избытке.
Эти данные позволяют заключить, что самая напряженная работа может быть обеспечена соответствующей доставкой кислорода и что при патологических условиях, связанных с выключением большой доли легочной поверхности из акта дыхания, доставка организму кислорода для сохранения нормальной жизнедеятельности в условиях покоя вполне достаточна.

ДАВЛЕНИЕ ГАЗОВ В ЛЕГОЧНЫХ АЛЬВЕОЛАХ

Давление газов в клетках и жидкостях организма является важным фактором, обусловливающим их нормальную жизнедеятельность. Для понимания процессов проникновения газов из воздуха легочных альвеол в кровь и обратно необходимо знать давление диффундирующих газов.
Вдыхаемый воздух по пути в альвеолы частично задерживается в верхних дыхательных путях и поэтому не участвует полностью в дыхательном процессе, происходящем в альвеолах. Путь от носовой полости до альвеол носит название вредного пространства. Объем этого пространства у взрослого человека в нормальных условиях, по общепризнанным данным,составляет около 150 мл. Определение давления О2 в воздухе легочных альвеол связано с определением газового состава альвеолярного воздуха. Трудность получения точных данных заключается в том, что к альвеолярному воздуху постоянно примешивается воздух вредного пространства, объем которого при различных условиях максимального и углубленного дыхания сильно варьирует, достигая в последнем случае 400-600 мл. Поэтому данные, полученные различными авторами, при исследовании альвеолярного воздуха с учетом вредного пространства, различны. Обычно рекомендуют брать для анализа стробу альвеолярного воздуха в конце выдоха после короткого дыхательного толчка.
...Таким образом, парциальное давление кислорода в альвеолярном воздухе зависит от барометрического давления, характера и объема легочной вентиляции и скорости диффузии кислорода в кровь и, по данным большинства исследователей, составляет 106-107 мм ртутного столба.

Популярные статьи сайта из раздела «Медицина и здоровье»

Популярные статьи сайта из раздела «Сны и магия»

Когда снятся вещие сны?

Достаточно ясные образы из сна производят неизгладимое впечатление на проснувшегося человека. Если через какое-то время события во сне воплощаются наяву, то люди убеждаются в том, что данный сон был вещим. Вещие сны отличаются от обычных тем, что они, за редким исключением, имеют прямое значение. Вещий сон всегда яркий, запоминающийся...

Почему снятся ушедшие из жизни люди?

Существует стойкое убеждение, что сны про умерших людей не относятся к жанру ужасов, а, напротив, часто являются вещими снами. Так, например, стоит прислушиваться к словам покойников, потому что все они как правило являются прямыми и правдивыми, в отличие от иносказаний, которые произносят другие персонажи наших сновидений...

Кислород - один из самых распространенных элементов не только в природе, но и в составе тела человека.

Особые свойства кислорода как химического элемента сделали его в ходе эволюции живых существ необходимым партнером в фундаментальных процессах жизнедеятельности. Электронная конфигурация молекулы кислорода такова, что он имеет неспаренные электроны, которые обладают большой реакционной способностью. Обладая поэтому высокими окислительными свойствами, молекула кислорода используется в биологических системах как своеобразная ловушка электронов, энергия которых гасится, когда они связаны с кислородом в молекуле воды.

Несомненно, что кислород «пришелся ко двору» для биологических процессов как акцептор электронов. Весьма полезным для организма, клетки которого (особенно биологические мембраны) построены из разнообразного в физическом и химическом отношении материала, является и растворимость кислорода как в водной, так и в липидной фазе. Это дает возможность ему относительно легко диффундировать к любым структурным образованиям клеток и участвовать в окислительных реакциях. Правда, в жирах кислород растворим в несколько раз лучше, чем в водной среде, и это принимается во внимание при использовании кислорода в качестве лечебного средства.

Каждая клетка нашего организма требует бесперебойной доставки кислорода, где он используется в различных обменных реакциях. Для того чтобы доставить и рассортировать его по клеткам, нужен довольно мощный транспортный аппарат.

В обычном состоянии клеткам организма каждую минуту требуется поставлять около 200-250 мл кислорода. Нетрудно подсчитать, что в сутки потребность в нем составляет немалую величину (порядка 300 литров). При тяжелой работе эта потребность возрастает в десятки раз.

Диффузия кислорода из легочных альвеол в кровь происходит благодаря альвеолярно-капиллярной разнице (градиенту) напряжений кислорода, которая при дыхании обычным воздухом составляет: 104 (pO 2 в альвеолах) - 45 (pO 2 в легочных капиллярах) = 59 мм рт. ст.

Альвеолярный воздух (при средней емкости легких в 6 литров) содержит не более 850 мл кислорода, и этот альвеолярный резерв может обеспечить организм кислородом всего на 4 минуты, учитывая, что средняя потребность организма в кислороде в обычном состоянии составляет приблизительно 200 мл в минуту.

Подсчитано, что если бы молекулярный кислород просто растворялся в плазме крови (а растворяется он в ней плохо - 0,3 мл в 100 мл крови), то для того, чтобы обеспечить нормальную потребность в нем клеток, надо увеличить скорость сосудистого кровотока до 180 л в минуту. На самом деле кровь движется со скоростью всего 5 л в минуту. Доставка кислорода к тканям осуществляется за счет замечательного вещества - гемоглобина.

В гемоглобине содержится 96% белка (глобина) и 4% небелкового компонента (гема). Гемоглобин, подобно осьминогу, захватывает своими четырьмя щупальцами кислород. Роль «щупалец», специфически схватывающих в артериальной крови легких молекулы кислорода, выполняет гем, а точнее находящийся в центре его атом двухвалентного железа. Железо с помощью четырех связей «крепится» внутри порфиринового кольца. Такой комплекс железа с порфирином и называется протогемом или просто гемом. Две другие связи железа направлены перпендикулярно плоскости порфиринового кольца. Одна из них идет к белковой субъединице (глобину), а другая свободна, она-то непосредственно и ловит молекулярный кислород.

Полипептидные цепи гемоглобина укладываются в пространстве таким образом, что их конфигурация приближается к шарообразной. В каждой из четырех глобул имеется «карман», в котором помещается гем. Каждый из гемов способен поймать по одной молекуле кислорода. Молекула гемоглобина максимально может связать четыре молекулы кислорода.

Как же «работает» гемоглобин?

Наблюдения за дыхательным циклом «молекулярного легкого» (так назвал гемоглобин известный английский ученый М. Перутц) приоткрывает удивительные особенности этого пигментного белка. Оказывается, все четыре гема работают согласованно, а не автономно. Каждый из гемов как бы информирован о том, присоединил ли его партнер кислород или нет. В дезоксигемоглобине все «щупальца» (атомы железа) высовываются из плоскости порфиринового кольца и готовы связать молекулу кислорода. Поймав молекулу кислорода, железо втягивается внутрь порфиринового кольца. Первая молекула кислорода присоединяется труднее всего, а каждая последующая все лучше и легче. Иначе говоря гемоглобин действует согласно пословице «аппетит приходит во время еды». Присоединение кислорода даже меняет свойства гемоглобина: он становится более сильной кислотой. Этот факт имеет большое значение в переносе кислорода и углекислого газа.

Насытившись кислородом в легких, гемоглобин в составе эритроцитов переносит его с током крови к клеткам и тканям организма. Однако, прежде чем насытить гемоглобин, кислород должен раствориться в плазме крови и пройти через мембрану эритроцитов. Врачу в практической деятельности, особенно при использовании кислородотерапии, важно учитывать потенциальные возможности гемоглобина эритроцитов по удержанию и доставке кислорода.

Один грамм гемоглобина в обычных условиях может связать 1,34 мл кислорода. Рассуждая далее, можно рассчитать, что при среднем содержании гемоглобина в крови 14-16 мл%, 100 мл крови связывает 18-21 мл кислорода. Если учитывать объем крови, составляющий у мужчин в среднем около 4,5 литра, а у женщин - 4 литра, то максимальная связывающая активность гемоглобина эритроцитов составляет порядка 750-900 мл кислорода. Разумеется, это возможно только в том случае, когда весь гемоглобин насыщен кислородом.

При дыхании атмосферным воздухом гемоглобин насыщается неполностью - на 95-97%. Насытить его можно, применяя для дыхания чистый кислород. Достаточно повысить содержание его во вдыхаемом воздухе до 35% (вместо обычных 24%). В этом случае кислородная емкость будет максимальна (равна 21 мл O 2 на 100 мл крови). Больше кислород связываться не сможет из-за отсутствия свободного гемоглобина.

Небольшое количество кислорода остается растворенным в крови (0,3 мл на 100 мл крови) и переносится в таком виде к тканям. В естественных условиях потребности тканей удовлетворяются за счет кислорода, связанного с гемоглобином, ибо растворенный в плазме кислород составляет ничтожную величину - всего 0,3 мл в 100 мл крови. Отсюда следует вывод: если организму нужен кислород, то жить без гемоглобина он не может.

За время жизни (оно равно приблизительно 120 дням) эритроцит проделывает гигантскую работу, перенося от легких к тканям около миллиарда молекул кислорода. Однако у гемоглобина есть интересная особенность: он не всегда с одинаковой жадностью присоединяет кислород, равно как и не с одинаковой охотой отдает его окружающим клеткам. Это поведение гемоглобина определяется его пространственной структурой и может регулироваться как внутренними, так и внешними факторами.

Процесс насыщения гемоглобина кислородом в легких (или диссоциация гемоглобина в клетках) описывается кривой, имеющей S-образную форму. Благодаря-такой зависимости возможно нормальное снабжение клеток кислородом даже при небольших перепадах его в крови (от 98 до 40 мм рт. ст.).

Положение S-образной кривой непостоянно, и изменение ее указывает на важные перемены в биологических свойствах гемоглобина. Если кривая сдвигается влево и ее изгиб уменьшается, то это свидетельствует о повышении сродства гемоглобина к кислороду, о снижении обратного процесса - диссоциации оксигемоглобина. Напротив, смещение этой кривой вправо (и увеличение изгиба) свидетельствует о прямо противоположной картине - падении сродства гемоглобина к кислороду и лучшей отдаче его тканям. Понятно, что смещение кривой влево целесообразно для захвата кислорода в легких, а вправо - для отдачи его в тканях.

Кривая диссоциации оксигемоглобина меняется в зависимости от pH среды и температуры. Чем ниже pH (сдвиг в кислую сторону) и выше температура, тем хуже кислород захватывается гемоглобином, но лучше отдается тканям при диссоциации оксигемоглобина. Отсюда вывод: в жаркой атмосфере насыщение крови кислородом происходит неэффективно, но зато при повышении температуры тела разгрузка оксигемоглобина от кислорода весьма активна.

В эритроцитах есть и собственное регулирующее приспособление. Им является 2,3-дифосфоглицериновая кислота, образующаяся при распаде глюкозы. От этого вещества также зависит «настрой» гемоглобина по отношению к кислороду. Когда накапливается 2,3-дифосфоглицериновая кислота в эритроцитах, она уменьшает сродство гемоглобина к кислороду и способствует его отдаче тканям. Если ее мало - картина обратная.

Интересные события происходят и в капиллярах. В артериальном окончании капилляра происходит диффузия кислорода перпендикулярно движению крови (из крови внутрь клетки). Перемещение происходит в направлении разницы парциальных давлений кислорода, т. е. в клетки.

Предпочтение клетки отдают физически растворенному кислороду, и он используется в первую очередь. Одновременно от своей ноши разгружается и оксигемоглобин. Чем более интенсивно орган работает, тем больше он требует кислорода. При отдаче кислорода щупальца гемоглобина освобождаются. За счет поглощения кислорода тканями содержание оксигемоглобина в венозной крови падает с 97 до 65-75%.

Разгрузка оксигемоглобина попутно способствует транспортировке углекислого газа. Последний, образуясь в тканях как конечный продукт сгорания углеродсодержащих веществ, попадает в кровь и может вызвать значительное снижение pH среды (закисление), что несовместимо с жизнью. На самом деле pH артериальной и венозной крови может колебаться в чрезвычайно узком диапазоне (не более 0,1), и для этого необходимо нейтрализовать углекислоту и вынести ее из тканей в легкие.

Интересно, что скопление углекислоты в капиллярах и некоторое снижение pH среды как раз способствуют отдаче кислорода оксигемоглобином (кривая диссоциации сдвигается вправо, и S-образный изгиб увеличивается). Гемоглобин, играющий роль самой буферной системы крови, нейтрализует углекислоту. При этом образуются бикарбонаты. Часть углекислого газа связывается самим гемоглобином (в результате образуется карбгемоглобин). Подсчитано, что гемоглобин прямо или косвенно участвует в транспорте из тканей в легкие до 90% углекислого газа. В легких происходят обратные процессы, ибо оксигенация гемоглобина приводит к повышению его кислотных свойств и отдаче в окружающую среду ионов водорода. Последние, соединяясь с бикарбонатами, образуют угольную кислоту, которая расщепляется ферментом карбоангидразой на углекислый газ и воду. Углекислый газ выделяется легкими, а оксигемоглобин, связывая катионы (взамен на отщепившиеся ионы водорода), движется к капиллярам периферических тканей. Такая тесная связь между актами снабжения тканей кислородом и выносом углекислого газа из тканей в легкие напоминает о том, что при применении кислорода в лечебных целях не следует забывать о другой функции гемоглобина - освобождать организм от избытка углекислоты.

Артериально-венозная разница или перепад давлений кислорода вдоль капилляра (от артериального до венозного конца) дают представление о потребности тканей в кислороде. Длина капиллярного пробега оксигемоглобина различается в разных органах (да и потребности у них в кислороде не одинаковы). Поэтому, например, в мозгу напряжение кислорода падает меньше, чем в миокарде.

Здесь, правда, следует оговориться и напомнить, что миокард и другие мышечные ткани находятся в особых условиях. В мышечных клетках имеется активная система захвата кислорода из протекающей крови. Эту функцию выполняет миоглобин, имеющий такое же строение и работающий по тому же принципу, что и гемоглобин. Только у миоглобина одна белковая цепь (а не четыре, как у гемоглобина) и соответственно один гем. Миоглобин является как бы четвертушкой гемоглобина и захватывает только одну молекулу кислорода.

Своеобразие строения миоглобина, которое ограничивается только третичным уровнем организации его белковой молекулы, связывается на взаимодействии с кислородом. Миоглобин в пять раз быстрее связывает кислород, чем гемоглобин (имеет большое сродство к кислороду). Кривая насыщения миоглобина (или диссоциации оксимиоглобина) кислородом имеет вид гиперболы, а не S-образующую форму. В этом кроется большой биологический смысл, поскольку миоглобин, находящийся в глубине мышечной ткани (где низкое парциальное давление кислорода), жадно хватает кислород даже в условиях его слабого напряжения. Создается как бы кислородный резерв, который расходуется в случае необходимости на образование энергии в митохондриях. Например, в сердечной мышце, где много миоглобина, в период диастолы образуется резерв кислорода в клетках в виде оксимиоглобина, который во время систолы удовлетворяет потребности мышечной ткани.

По-видимому, постоянная механическая работа мышечных органов требовала дополнительных устройств для вылавливания и резервации кислорода. Природа создала его в виде миоглобина. Возможно, и в немышечных клетках имеется какой-то пока еще не известный механизм захвата кислорода из крови.

В целом полезность работы гемоглобина эритроцитов определяется тем, сколько он смог донести до клетки и передать ей молекул кислорода и вынести скапливающуюся в тканевых капиллярах углекислоту. К сожалению, этот труженик иногда работает не в полную силу и не по своей вине: освобождение кислорода из оксигемоглобина в капилляре зависит от возможностей биохимических реакций в клетках расходовать кислород. Если кислорода расходуется мало, то он как бы «застаивается» и в силу малой растворимости его в жидкой среде больше не поступает из артериального русла. Врачи при этом наблюдают снижение артериовенозной разницы по кислороду. Выходит, что гемоглобин бесполезно носит часть кислорода, да к тому же меньше выносит углекислого газа. Ситуация возникает не из приятных.

Знание закономерностей работы системы транспорта кислорода в естественных условиях позволяет сделать врачу ряд полезных выводов для правильного использования кислородотерапии. Само собой разумеющимся оказывается необходимость использования вместе с кислородом средств, стимулирующих зритропоэз, усиливающих кровоток в пораженном организме и помогающих использованию кислорода в тканях организма.

В то же время необходимо отчетливо знать, на какие же цели расходуется кислород в клетках, обеспечивая их нормальное существование?

На своем пути к месту участия в обменных реакциях внутри клеток кислород преодолевает немало структурных образований. Важнейшие из них - биологические мембраны.

Любая клетка имеет плазматическую (или наружную) мембрану и причудливое разнообразие других мембранных структур, ограничивающих субклеточные частицы (органоиды). Мембраны не просто перегородки, а образования, выполняющие специальные функции (транспорт, распад и синтез веществ, образование энергии и т. д.), которые определяются их организацией и составом входящих в них биомолекул. Несмотря на вариабельность форм и размеров мембран, они состоят преимущественно из белков и липидов. Остальные вещества, тоже обнаруживаемые в мембранах (например, углеводы), соединены с помощью химических связей либо с липидами, либо с белками.

Не будем останавливаться на подробностях организации белково-липидных молекул в мембранах. Важно отметить, что все модели строения биомембран («бутербродная», «мозаичная» и т. д.) предполагают наличие в мембранах бимолекулярной липидной пленки, скрепленной белковыми молекулами.

Липидный слой мембраны представляет собой жидкую пленку, находящуюся в постоянном движении. Кислород, благодаря хорошей растворимости в жирах, проходит двойной липидный слой мембран и попадает внутрь клеток. Часть кислорода передается во внутреннюю среду клеток через переносчики типа миоглобина. Считается, что кислород находится в растворимом состоянии в клетке. Вероятно, в липидных образованиях его растворяется больше, а в гидрофильных - меньше. Вспомним, что строение кислорода как нельзя лучше отвечает критериям окислителя, использующегося в качестве ловушки электронов. Известно, что основное сосредоточение окислительных реакций происходит в специальных органоидах-митохондриях. Образные сравнения, которыми наделяли митохондрии ученые-биохимики, говорят о назначении этих небольших (размером от 0,5 до 2 микрон) частиц. Их величают и «энергетическими станциями», и «силовыми станциями» клетки, подчеркивая тем самым их ведущую роль в образовании богатых энергией соединений.

Здесь, наверное, стоит сделать небольшое отступление. Как известно, одним из фундаментальных признаков живого является эффективное извлечение энергии. Человеческий организм использует внешние источники энергии - питательные вещества (углеводы, липиды и белки), которые с помощью гидролитических ферментов желудочно-кишечного тракта дробятся на более мелкие куски (мономеры). Последние всасываются и доставляются в клетки. Энергетическую ценность представляют только те вещества, которые содержат водород, обладающий большим запасом свободной энергии. Основная задача клетки, а точнее содержащихся в ней ферментов, состоит в обработке субстратов таким образом, чтобы оторвать от них водород.

В митохондриях локализованы почти все ферментные системы, выполняющие подобную роль. Здесь окисляются осколок глюкозы (пировиноградная кислота), жирные кислоты и углеродные скелеты аминокислот. После заключительной обработки с этих веществ «сдираются» остатки водорода.

Водород, который отрывается от сгораемых веществ с помощью специальных ферментов (дегидрогеназ), пребывает не в свободном виде, а в связи со специальными переносчиками - коферментами. Ими служат производные никотинамида (витамина РР) - НАД (никотинамидадениндинуклеотид), НАДФ (никотинамидадениндинуклеотидфосфат) и производные рибофлавина (витамина В 2) - ФМН (флавинмононуклеотид) и ФАД (флавинадениндинуклеотид).

Сгорает водород не сразу, а постепенно, порциями. В противном случае клетка не могла бы воспользоваться его энергией, ибо при взаимодействии водорода с кислородом произошел бы взрыв, что легко демонстрируется в лабораторных опытах. Для того чтобы водород отдавал заложенную в нем энергию по частям, существует во внутренней мембране митохондрий цепь переносчиков электронов и протонов, иначе именуемая дыхательной цепью. На определенном участке этой цепи пути электронов и протонов расходятся; электроны скачут по цитохромам (состоящим, как и гемоглобин, из белка и гема), а протоны выходят в окружающую среду. В конечной точке дыхательной цепи, где находится цитохромоксидаза, происходит «соскальзывание» электронов на кислород. При этом полностью гасится энергия электронов, и кислород, связывая протоны, восстанавливается до молекулы воды. Вода энергетической ценности для организма уже не представляет.

Энергия, которую отдают скачущие по дыхательной цепи электроны, преобразуется в энергию химических связей аденозинтрифосфата - АТФ, который служит основным аккумулятором энергии в живых организмах. Поскольку здесь совмещены два акта: окисление и образование богатых энергией фосфатных связей (имеющихся в АТФ), то процесс образования энергии в дыхательной цепи назван окислительным фосфорилированием.

Как происходит сочетание движения электронов по дыхательной цепи и улавливание в ходе этого движения энергии? Это еще не совсем ясно. А между тем действие биологических преобразователей энергии позволило бы решить многие вопросы, связанные со спасением пораженных патологическим процессом клеток организма, как правило, испытывающих энергетический голод. Как считают специалисты, раскрытие тайн механизма образования энергии в живых существах приведет к созданию в техническом отношении более перспективных генераторов энергии.

Это перспективы. Пока же известно, что улавливание энергии электронов происходит на трех участках дыхательной цепи и, следовательно, при сгорании двух атомов водорода образуется три молекулы АТФ. Коэффициент полезного действия такого трансформатора энергии приближается к 50%. Учитывая, что доля энергии, поставляемая клетке при окислении водорода в дыхательной цепи, составляет не менее 70-90%, становятся понятными красочные сравнения, которыми награждались митохондрии.

Энергия АТФ используется в самых различных процессах: для сборки сложных структур (например, белков, жиров, углеводов, нуклеиновых кислот) из строительных белков, совершения механической деятельности (сокращения мышц), электрической работы (возникновение и распространение нервных импульсов), транспорта и аккумуляции веществ внутри клеток и т. д. Короче говоря, жизнь без энергии невозможна, и как только наступает резкий дефицит ее, живые существа погибают.

Возвратимся к вопросу о месте кислорода в генерации энергии. На первый взгляд кажется замаскированным непосредственное участие кислорода в этом жизненно важном процессе. Вероятно, будет уместным сравнить сгорание водорода (и попутно образование энергии) с поточной линией, хотя дыхательная цепь - линия не по сборке, а по «разборке» вещества.

У истоков дыхательной цепи стоит водород. От него поток электронов устремляется к конечному пункту - кислороду. В отсутствии кислорода или при его нехватке поточная линия либо останавливается, либо работает не в полную нагрузку, потому что разгружать ее или некому, или эффективность разгрузки ограничена. Нет потока электронов - нет и энергии. По меткому определению выдающегося биохимика А. Сент-Дьердьи, жизнью управляет поток электронов, движение которым задается внешним источником энергии - Солнцем. Велико искушение продолжить эту мысль и добавить, что коль жизнью управляет поток электронов, то сохраняет непрерывность такого потока кислород

А можно ли заменить кислород другим акцептором электронов, разгрузить дыхательную цепь и восстановить образование энергии? В принципе возможно. Это легко демонстрируется в лабораторных опытах. Для организма подобрать такой акцептор электронов, как кислород, чтобы он легко переносился, проникал во все клетки и участвовал в окислительно-восстановительных реакциях, пока непостижимая задача.

Итак, кислород, сохраняя непрерывность потока электронов в дыхательной цепи, способствует в нормальных условиях постоянному образованию энергии из поступающих в митохондрии веществ.

Разумеется, ситуация, представленная выше, несколько упрощена, и сделано это нами для того, чтобы яснее показать роль кислорода в регуляции энергетических процессов. Эффективность же такой регуляции определяется работой аппарата трансформации энергии движущихся электронов (электрического тока) в химическую энергию связей АТФ. Если питательные вещества даже при наличии кислорода. сгорают в митохондриях «впустую», выделяющаяся при этом тепловая энергия бесполезна для организма, и может возникнуть энергетический голод со всеми вытекающими из него последствиями. Однако такие крайние случаи нарушения фосфорилирования при переносе электронов в митохондриях тканей вряд ли возможны и в практике не встречались.

Куда более часты случаи нарушения регуляции образования энергии, связанные с недостаточным поступлением в клетки кислорода. Означает ли это немедленную гибель? Оказывается, нет. Эволюция распорядилась мудро, оставив определенный запас энергетической прочности тканям человека. Его обеспечивает бескислородный (анаэробный) путь образования энергии из углеводов. Эффективность его, однако, относительно низка, поскольку окисление тех же питательных веществ в присутствии кислорода дает в 15-18 раз больше энергии, чем без него. Однако в критических ситуациях ткани организма сохраняют жизнеспособность именно благодаря анаэробному образованию энергии (путем гликолиза и гликогенолиза).

Это небольшое отступление, рассказывающее о потенциальной возможности образования энергии и существовании организма без кислорода, лишнее свидетельство того, что кислород - важнейший регулятор процессов жизнедеятельности и что без него существование невозможно.

Однако не менее важным является участие кислорода не только в энергетических, но и в пластических процессах. На эту сторону кислорода указывали еще в 1897 г. наш выдающийся соотечественник А. Н. Бах и немецкий ученый К. Энглер, которые разработали положение «о медленном окислении веществ активированным кислородом». Долгое время эти положения оставались в забвении из-за слишком большой увлеченности исследователей проблемой участия кислорода в энергетических реакциях. Лишь в 60-х годах нашего столетия вновь был поднят вопрос о роли кислорода в окислении многих природных и чужеродных соединений. Как оказалось, этот процесс не имеет никакого отношения к образованию энергии.

Основным органом, использующим кислород для внедрения его в молекулу окисляемого вещества, является печень. В клетках печени происходит таким путем обезвреживание многих чужеродных соединений. И если печень по праву называется лабораторией по обезвреживанию лекарств и ядов, то кислороду в этом процессе отводится весьма почетное (если не главенствующее) место.

Кратко о локализации и устройстве аппарата потребления кислорода с пластическими целями. В мембранах эндоплазматической сети, пронизывающей цитоплазму печеночных клеток, имеется короткая цепь переноса электронов. Она отличается от длинной (с большим числом переносчиков) дыхательной цепи. Источником электронов и протонов в этой цепи служит восстановленный НАДФ, который образуется в цитоплазме, например, при окислении глюкозы в пентозофосфатном цикле (отсюда глюкозу можно назвать полноправным партнером по детоксикации веществ). Электроны и протоны переносятся на особый белок, содержащий флавин (ФАД) и от него на конечное звено - специальный цитохром, называемый цитохромом Р-450. Так же как гемоглобин и цитохромы митохондрий, он является гемсодержащим белком. Его функция двойственная: он связывает окисляемое вещество и участвует в активировании кислорода. Конечный результат такой сложной функции цитохром Р-450 выражается в том, что один атом кислорода попадает в молекулу окисляемого вещества, второй - в молекулу воды. Различия между заключительными актами потребления кислорода при образовании энергии в митохондриях и при окислении веществ эндоплазматической сети очевидно. В первом случае кислород используется на образование воды, а во втором - на образование как воды, так и окисленного субстрата. Доля кислорода, расходующегося в организме на пластические цели, может составлять 10-30% (в зависимости от условий для благоприятного протекания этих реакций).

Ставить вопрос (даже чисто теоретически) о возможности замены кислорода другими элементами бессмысленно. Учитывая, что указанный путь утилизации кислорода к тому же необходим для обмена важнейших природных соединений - холестерина, желчных кислот, стероидных гормонов, - легко понять, сколь далеко простираются функции кислорода. Оказывается, он регулирует образование ряда важнейших эндогенных соединений и детоксикацию чужеродных веществ (или, как их сейчас называют, ксенобиотиков).

Следует, однако, оговориться, что ферментативная система эндоплазматической сети, использующая кислород для окисления ксенобиотиков, имеет некоторые издержки, которые заключаются в следующем. Иногда при внедрении кислорода в вещество образуется более токсичное соединение, чем исходное. В таких случаях кислород выступает как бы соучастником отравления организма безвредными соединениями. Серьезный оборот подобные издержки принимают, например, тогда, когда из проканцерогенов с участием кислорода образуются канцерогены. В частности, известный компонент табачного дыма бензпирен, считавшийся канцерогенным веществом, на самом деле приобретает эти свойства при окислении в организме с образованием оксибензпирена.

Приведенные факты заставляют внимательно отнестись к тем ферментативным процессам, в которых кислород используется как строительный материал. В отдельных случаях требуется разработать превентивные меры, направленные против такого способа потребления кислорода. Эта задача весьма трудная, но подходы к ней искать необходимо, чтобы с помощью различных приемов направлять регулирующие потенции кислорода в нужное для организма русло.

Последнее особенно важно в случае использования кислорода в таком «бесконтрольном» процессе, как перекисное (или свободнорадикальное) окисление ненасыщенных жирных кислот. Ненасыщенные жирные кислоты входят в состав различных липидов биологических мембран. Архитектоника мембран, их проницаемость и функции входящих в состав мембран ферментативных белков в значительной степени определяются соотношением различных липидов. Протекает переокисление липидов либо с помощью ферментов, либо без них. Второй вариант не отличается от свободнорадикального окисления липидов в обычных химических системах и требует присутствия аскорбиновой кислоты. Участие кислорода в переокислении липидов, разумеется, не самый лучший способ приложения его ценных биологических качеств. Свободнорадикальный характер этого процесса, инициатором которого может быть двухвалентное железо (центр радикалообразования), позволяет в сжатые сроки привести к распаду липидного остова мембран и, следовательно, к гибели клеток.

Подобная катастрофа в естественных условиях, однако, не происходит. В клетках имеются природные антиоксиданты (витамин Е, селен, некоторые гормоны), которые обрывают цепь перекисного окисления липидов, препятствуя образованию свободных радикалов. Тем не менее использование кислорода в переокислении липидов, как считают некоторые исследователи, имеет и положительные стороны. В биологических условиях перекисное окисление липидов необходимо для самообновления мембран, так как перекиси липидов более водорастворимые соединения и легче выделяются из мембраны. Их сменяют новые, гидрофобные молекулы липидов. Лишь чрезмерность этого процесса приводит к развалу мембран и патологическим сдвигам в организме.

Настало время подвести итоги. Итак, кислород - важнейший регулятор процессов жизнедеятельности, используемый клетками организма как необходимый компонент для образования энергии в дыхательной цепи митохондрий. Потребности в кислороде этих процессов обеспечиваются неодинаково и зависят от многих условий (от мощности ферментативной системы, достатка в субстрате и доступности самого кислорода), но все-таки львиная доля кислорода расходуется на энергетические процессы. Отсюда «прожиточный минимум» и функции отдельных тканей и органов при острой нехватке кислорода определяется эндогенными кислородными запасами и мощностью бескислородного пути образования энергии.

Однако не менее важно снабжать кислородом и другие, пластические процессы, хотя для этого расходуется меньшая его часть. Помимо ряда необходимых природных синтезов (холестерина, желчных кислот, простагландинов, стероидных гормонов, биологически активных продуктов обмена аминокислот) присутствие кислорода особенно необходимо для обезвреживания лекарств и ядов. При отравлениях чужеродными веществами можно, пожалуй, допустить большую жизненную важность кислорода для пластических, чем для энергетических целей. При интоксикациях эта сторона действия как раз находит практическое применение. И лишь в одном случае врачу приходится думать о том, как поставить барьер на пути потребления в клетках кислорода. Речь идет об угнетении использования кислорода в переокислении липидов.

Как видим, знание особенностей доставки и путей потребления кислорода в организме является ключом к разгадке нарушений, возникающих при различного рода гипоксических состояниях, и к правильной тактике лечебного применения кислорода в клинике.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .